
PyXYZ: An Educational 3D Wireframe Engine in Python
Diogo de Andrade
Lusófona University

School of Communication, Arts and Information Tech.
Lisboa, Portugal

diogo.andrade@ulusofona.pt

Nuno Fachada
Lusófona University

COPELABS
Lisboa, Portugal

nuno.fachada@ulusofona.pt

Figure 1: Sample game application for PyXYZ, where the player has to destroy missiles using the mouse.

ABSTRACT
In this paper we introduce PyXYZ, a 3D wireframe software ren-
dering framework for educational purposes. The main goal of this
framework is to provide a simple-to-understand tool that students
can use to build a more sophisticated engine, while learning math-
ematics and acquiring a deeper knowledge of the complexity of a
modern 3D engine. PyXYZ can be used as a teaching aid in course
work and/or as a template for multi-goal project assignments, allow-
ing students with diverse capabilities and interests to have different
levels of commitment. The engine has been used with positive re-
sults in a mathematics course unit of a computer games BA and
can be easily adapted to various teaching scenarios.

CCS CONCEPTS
•Applied computing→Computer games; Education; •Mathe-
matics of computing; • Software and its engineering→General
programming languages;

KEYWORDS
software rendering, computer games, 3D, undergraduate degree,
Python, Pygame

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE ’21, June 26-July 1, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8214-4/21/06.
https://doi.org/10.1145/3430665.3456345

ACM Reference Format:
Diogo de Andrade and Nuno Fachada. 2021. PyXYZ: An Educational 3D
Wireframe Engine in Python. In Proceedings of the 2021 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’21), June
26-July 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3430665.3456345

1 INTRODUCTION
Teaching mathematics to students of different backgrounds is a
difficult task [3]. It is also a requirement at Lusófona University’s
Bachelor in Videogames, a three year multidisciplinary Bachelor of
Arts (BA), open to students with various high school academic back-
grounds, such as arts, sciences, or humanities [10]. Consequently,
in the past, a significant part of the students has struggled with
understanding mathematics, as well as its relevance for developing
computer games and for their own future careers.

In this paper we introduce PyXYZ (read pixies, pronounced "pIk-
siz), a simple 3D wireframe engine for education, entirely pro-
grammed in Python. The engine is focused on the transformation
part of the rendering pipeline and has simplicity and increasing
student engagement with mathematics as its main goals. It can be
used in two ways:

(1) As a teaching aid in course work, for example to demonstrate
matrix multiplication.

(2) As an evaluation tool, in which students are required to add
functionality.

The engine uses a software-based renderer instead of modern
GPU rendering. Using APIs such as OpenGL would add a layer of
abstraction and hide the transformation module of the rendering

This work is licensed under a Creative Commons Attribution International 4.0 License.

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8214-4/21/06.
https://doi.org/10.1145/3430665.3456345

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

519

https://doi.org/10.1145/3430665.3456345
https://doi.org/10.1145/3430665.3456345
https://creativecommons.org/licenses/by/4.0/

pipeline. Considering more advanced topics (such as shaders) re-
quire solid knowledge of these components, the decision was made
to avoid hardware APIs and, by extension, existing game engines,
as most are focused on functionality and performance, leading to
optimized code that is harder to read and modify.

The paper is organized as follows. In Section 2, we review related
work concerning the use of game engines in education. In Section 3,
we present the PyXYZ engine, discussing its architecture, depen-
dencies, basic usage, limitations, included sample applications and
availability. A field trial in which PyXYZ was used for the final
project of a math for games course unit is presented in Section 4.
A discussion of the design decisions and how the engine can be
adapted for different contexts takes place in Section 5. The paper
closes with the Conclusions in Section 6.

2 BACKGROUND
There is extensive work on using existing and/or custom-made
game engines for teaching game development fundamentals such
as the math of rendering. Parberry et al. [21] discuss the advantages
and disadvantages of using an existing engine or implementing
your own. Later, Parberry [20] presented the custom SAGE engine,
and its use on a number of game development subjects, namely a
math and physics for games course. Other custom-designed frame-
works include Fabula [4] and wxgame2 [13], but most of these are
focused on more general game prototyping and development, and
not necessarily on the math and rendering aspects targeted by this
work. The engine developed by Aycock et al. [2] targets CS1 stu-
dents and shares some of the same goals as PyXYZ, but it focuses
on 2D and fake 3D games, while we are mostly interested in the
actual 3D transformations.

Alice [7] has an educational goal and a target audience composed
of non-science/engineering undergraduates, and uses Python to
manipulate a 3D environment. However, its focus is on content
production while avoiding mathematics and programming, laying
down the groundwork for future use of commercial game engines.
This is also the case of platforms such as AgentCubes [15]. Conse-
quently, both tools have opposite goals to PyXYZ.

Depending on course requirements, an existing game engine
can often be more productive. Several authors have proposed a
number of guidelines to aid in selecting the engine, namely its
cost (or the absence thereof), quality of documentation, flexibility
and extensibility, cross-platform support, learning curve, usage in
industry and runtime stability [9, 25].

The Unity game engine meets many of the aforementioned guide-
lines. Indeed, it has been successfully used in many education sce-
narios, often proving more advantageous and productive than other
engines [9] or custom approaches [14]. For example, it has been used
in secondary education [6] and for teaching shader programming
[14], and is in fact the game engine of choice for most Lusófona’s
Videogames degree course units [10]. However, like most of the
available engines, Unity is designed for efficiency and, therefore,
uses the GPU through a graphics API such as OpenGL, DirectX
or Vulkan, hiding many of the implementation details we want
students to explore.

Since the first semester of Lusófona’s Videogames degree is fo-
cused on the Python programming language [10], a number of

Object3d

1*

Scene
1

*
Camera

1

1

Vector3 Mesh
1*

2

1

Quaternion

1

*

1

1

Material* 1

Color

1

1

Figure 2: PyXYZ UML diagram. The Quaternion class is pre-
sented in grey since it is provided by a third-party library.

Python-based engines were also considered. These range from
simple OpenGL bindings like PyOpenGL [11], to full engines like
Panda3D [23], Py3D [12] and Ursina [1]. Unfortunately, most of
these are actually written in C/C++ and have Python bindings,
making it harder for students to tinker with the transformation
pipeline, which is the intended goal of PyXYZ. In these engines
the pipeline is hidden behind the API, and manipulating it would
require a deeper understanding of GPU and shader programming.

At the time of writing, and to the best of our knowledge, there
was no generally available and well-documented Python 3D engine
that shares the design philosophy and educational goals of PyXYZ,
particularly its focus on teaching the transformation pipeline.

3 PYXYZ
3.1 Architecture
PyXYZ is an object-oriented engine. Its main design focus is on
simplicity, ease of learning and extension. It provides very little
functionality out-of-the-box, basically allowing for the programmer
to visualize a 3D scene using a virtual camera. A scene is composed
of 3D objects organized in an optional hierarchical fashion, and each
object contains a polygonal mesh and a material that controls how
the mesh is rendered. Figure 2 shows the UML diagram representing
the general architecture of the engine.

PyXYZ provides two elementary helper classes: Color, which
describes a color with separate red, green, blue and alpha channels;
and Vector3, a straightforward 3D vector implementation.

The core of the engine comprises the Scene, Object3d, Camera
and Mesh classes, which handle the rendering itself. An Object3d
has the position, rotation and scaling (PRS properties), all of which
are in local space. While position and scaling are represented
by a Vector3, rotation is handled by a Quaternion instance (the
Quaternion class is provided by a third-party library, as discussed
in the next section). An Object3d also stores the reference for a
mesh and a material, and contains a list of child Object3d, which
enables the user to build the hierarchical scene graph. A Scene
stores the scene graph with any number of Object3d instances on
the root level. It also contains a camera, used for the rendering.

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

520

PyXYZ + User Projects

Pygame

Python Standard Library

NumPy

NumPy-Quaternion

Figure 3: PyXYZ and user project dependencies. Users de-
velop their projects in the top-level (light red block), possi-
bly manipulating PyXYZ source code and being exposed to
the Pygame, NumPy and NumPy-Quaternion libraries (light
green), as well as to the Python Standard Library (light yel-
low).

The Camera class is derived from Object3d, so that it can be
treated in the same way, and even parented to other objects, or
vice-versa. It also provides a simple function to convert from screen
space coordinates to a ray origin/position. Note that the camera
can be parented to other objects, but the rendering itself uses the
local PRS of the camera, and not the world PRS. This is one of the
possible exercises given to the students.

The Mesh contains a list of polygons, with each polygon being a
list of vertex positions in local space. There are no indexing primi-
tives as simplicity is the main driver of the engine. The Material
class stores rendering properties such as line color and width. A
single material can be used by multiple meshes for rendering.

3.2 Dependencies
PyXYZ uses Pygame [17] as a visualization engine. It also uses
NumPy [19] and NumPy-Quaternion [5] for matrix and quaternion
management, respectively. All of these libraries are visible at the
user level, so they can be used directly for developing projects and
extensibility purposes, as shown in Figure 3.

Pygame is used for the actual rendering. It was selected for its
simplicity and support for polygon rendering. It also performs
input handling, allowing students to build interactive systems – a
requirement in several projects.

NumPy and NumPy-Quaternion are used for matrix multipli-
cation and quaternion operations, respectively, and were chosen
for performance reasons. Nonetheless, NumPy is not used for user-
facing vector handling since the syntax is a bit complex and it might
overwhelm the students. The use of NumPy is only required when
delving deeper into the engine or when implementing advanced fea-
tures such as clipping or lighting. There is, however, some exposure
to NumPy-Quaternion, since this is the way to handle rotations in
PyXYZ.

The chosen libraries are all cross-platform and fully open source,
allowing PyXYZ to be used on different computational systems and
without proprietary restrictions.

Listing 1: Creating a scene, a camera, and an object that con-
tains a sphere mesh.� �
Create a scene
scene = Scene("TestScene")
scene.camera = Camera(False , 640, 480)

Moves the camera back 2 units
scene.camera.position -= Vector3(0, 0, 2)

Create a sphere and place it in a scene , at
position (0,0,0)
obj1 = Object3d("TestObject")
obj1.scale = Vector3(1, 1, 1)
obj1.position = Vector3(0, 0, 0)
obj1.mesh = Mesh.create_sphere ((1, 1, 1), 12, 12)

Set the material of the sphere , in this case it is red
obj1.material = Material(color(1, 0, 0, 1),

"TestMaterial1")
scene.add_object(obj1)� �

Figure 4: Sample sphere application for PyXYZ, based on the
code shown in Listing 1.

3.3 Basic usage and rendering process
From an engine perspective, the programmer just needs to initialize
the Pygame context, using code similar to:
pygame.init()

screen = pygame.display.set_mode ((640, 480))

Then, the programmer can create a scene and add objects to
it, as shown in Listing 1. This example leads to a rendering like
in Figure 4, which can be drawn on screen with the following
instruction:
scene.render(screen)

For simplicity, instead of following the example of modern ren-
dering engines, this does not trigger a gather process and building
of a command queue for rendering, opting instead for a simple hier-
archical traversal of the scene graph and requesting every object to
render itself, computing the clip matrix at every graph node. The
meshes that are defined at every level are then rendered using this
clip matrix.

All the transformation and rendering are done at a software level.
Again, for simplicity’s sake, this is a two-step process:

(1) Transform mesh vertices.

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

521

Figure 5: Sample terrain application for PyXYZ, generated
with a 2-octave Perlin noise, and with colors based on the
height and slope of the polygon.

(2) Render the transformed mesh vertices.
No indexing is done at the mesh level, although it would be easy

to add. This might be given as a student exercise, which is the main
reason why the transform and render steps are separated.

Note that, since the engine does not use a command queue ap-
proach, there is no sorting step. For a wireframe engine, this is
irrelevant, but as we ask students to add solid-polygon rendering,
they will have to change this part of the pipeline to add sorting.
Primitive clipping is also not implemented, so there may be arti-
facts when objects are rendered behind the camera. Implementing
frustum culling and clipping may also be proposed as an exercise
for more advanced students.

3.4 Sample applications
Even with the limitations imposed by the desired simplicity of
the engine, some interesting graphical applications can be built. A
number of sample applications are available, serving not only to
demonstrate PyXYZ’s capabilities but also to exemplify how to use
the engine. For example, the sphere sample application (Listing 1,
Figure 4) shows how to use PyXYZ’s most basic capabilities.

A more interesting sample application is shown in Figure 5.
This application generates a terrain based on a 2-octave Perlin
noise, colors the generated polygons based on height and slope,
and rotates the terrain in front of the camera.

Another sample is the cubefall example, shown in Figure 6. Here,
cubes are generated on the upper part of the camera viewpoint and
drop down with gravity. This example shows the students how to
manage object lifecycle and animation, instead of following the
standard pattern of creating a scene and visualizing it.

The most complex sample is a template for a game where the
player can shoot some missiles using the mouse, as shown in
Figure 1. The project demonstrates user input and a more com-
plex application loop. It also shows functionality like creating a
mesh from different parts, converting a mouse position into a ray,
sphere/sphere collision detection, target tracking and a rudimen-
tary screen flash effect. The game is not complete, since it does
not have win/lose conditions, nonetheless opening a number of
possibilities for student projects.

Figure 6: Cubefall sample application for PyXYZ. Cubes are
spawned over time and fall down, being destroyed when they
leave the screen.

More sample applications can potentially be made available, fur-
ther exemplifying the capabilities of and how to use PyXYZ. How-
ever, new examples should stay relatively simple, so that students
may develop new functionalities by themselves. As an example,
applications in which the camera goes inside the scene being ren-
dered, and thus requiring frustum culling/clipping, should not be
included, allowing for such functionality to be implemented by
students as an exercise or as a project requirement.

3.5 Limitations
A considerable limitation is the fact that pure, interpreted Python
is slow, so the engine will never be able to have good performance.
The terrain sample application was benchmarked to understand the
severity of this limitation, measuring the frame time (spanning from
start of rendering until frame is displayed on screen, so it might
include vertical sync), the transformation time (transforming the
mesh vertex from local space to clip space) and render time (time
to actually render the wireframe polygons). All these benchmarks
were performed on a 2019 Apple MacBook Pro with an 8-core Intel
i9 processor, running at 2.3 GHz, with 32 GB of DDR4 RAM. PyXYZ
and Pygame make no use of multithreading, so only a single core
is used.

As it is clear from Figure 7, the frame time scales linearly with
the vertex count. The bulk of the frame time is spent on the transfor-
mation step. This is unsurprising, given that the rendering is done
by Pygame and is implemented natively (Pygame is essentially a
wrapper to a C library), while transformation is done using a pure
Python loop to iterate the vertices and multiply them by the clip
matrix. Although this vector/matrix multiplication is implemented
through NumPy (and thus optimized), the loop itself is a bottleneck
in an interpreted language such as Python, and a prime candidate
for vectorization. Although it would not be difficult to do so using
NumPy’s capabilities, the code would become harder to read and
modify, which is in contrast with the primary goal of this engine,
so the decision was made to prioritize clean, readable code over
optimization.

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

522

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Vertex Count 1e5

0

200

400

600

800

1000

Ti
m
e
(m

s)

Transformation time
Render time
Frame time

Figure 7: Performance benchmark of PyXYZ with increasing
vertex counts.

It might be an option for more advanced students to challenge
them with implementing vectorization of the mesh rendering, es-
pecially considering that when lighting is implemented, there is
additional transformation that must be done to account for world
space normals.

Nonetheless, even with these performance limitations, the en-
gine is usable for simple scenarios and games. We do not believe
simplicity and ease of use should be sacrificed for better perfor-
mance when the goal is “simply” to motivate students to learn
math.

3.6 Availability
PyXYZ is made available as free and open source software un-
der the MIT license at https://github.com/VideojogosLusofona/
PyXYZ. Full source code of the examples presented in Section 3.4,
including instructions on how to run them, is available at https:
//github.com/VideojogosLusofona/PyXYZ-Samples. The project is
fully documented and the documentation is available at https:
//videojogoslusofona.github.io/PyXYZ/.

4 FIELD TRIAL
The curriculum of two course units at Lusófona University’s Bach-
elor in Videogames, Math and Physics for Games I (MPG1) and
Programming Fundamentals (PF), was collaboratively designed so
that the courses could work in tandem [10]. In MPG1 we teach
basic topics such as trigonometry and matrix mathematics. In PF,
students learn how to program using the Python programming
language, focusing mainly on algorithms and basic data structures.
The dual curriculum design advocates that the mathematical con-
cepts exposed in MPG1 drive the examples and exercises in PF,
thus allowing students to experiment first-hand with often abstract
math topics. Complementing this approach, the overall evaluation
in MPG1 includes a project that combines knowledge in both math-
ematics and programming. The need for a layered and multi-goal
assignment, accessible to students with diverse capabilities and
interests, was the main motivation for the work presented here.

Figure 8: Screenshot of a student’s final project.

PyXYZ was used in the 2019/2020 MPG1 final assignment, with
a set of tasks to be completed by the students—some of which are
presented in Table 1, together with their level of difficulty. Evalu-
ation was tiered and linked to these tasks. A total of 28 students
were evaluated. With respect to the practical evaluation compo-
nent, there were 16 assignments handed in (corresponding to 22
students), 15 of which were rated with a passing grade. Grading
was done on a 0 to 20 scale. Most grades were around the 10 to
13 mark (mean 11.8, median 12), corresponding to students that
completed the most basic part of the assignment with one extra
assignment goal, at most. While the assignment could be under-
taken by groups of up to three students, most of the higher grades
(>15) were for individual submissions. Students were later asked to
rate their motivation [22, 24] with the project, in a scale of 1 to 5.
The gathered data, spanning students from the last three academic
years, in which only the last year (2019/2020) used PyXYZ in the
project, showed that students were more motivated, with the mean
motivation going up, from 2.55 to 3.25 [8].

The use of a practical example that can be taken apart and ex-
tended is a very helpful tool for educational purposes, especially
in the context of a broad-spectrum videogames degree, where the
interests and motivations are different from student to student.
Some students are driven by a short term reward cycle, while oth-
ers thrive on understanding complex topics and by tinkering. As
an example, one of the students rebuilt a significant part of PyXYZ
to make it more similar to the Unity game engine [16], in which
he was already proficient, namely by reimplementing game objects
using the Component pattern [18]. A screenshot of this project is
shown in Figure 8.

5 DISCUSSION
Most of the mathematical concepts in the curriculum are mainly
used in the context of 3D graphics and physics. For that reason,
the possibility of using 2D engines for this part of the curriculum
was discarded. Nonetheless, these are used in course units geared
towards game design and general game development.

Python was chosen instead of a lower-level language since it is
easy to learn, and we want students to focus on higher-level con-
cepts instead of being worried with low-level memory management

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

523

https://github.com/VideojogosLusofona/PyXYZ
https://github.com/VideojogosLusofona/PyXYZ
https://github.com/VideojogosLusofona/PyXYZ-Samples
https://github.com/VideojogosLusofona/PyXYZ-Samples
https://videojogoslusofona.github.io/PyXYZ/
https://videojogoslusofona.github.io/PyXYZ/

Table 1: Some of the more relevant tasks for the final assignment of the 2019/2020 Maths and Physics for Games I course unit,
together with their level of difficulty, ranked from 1 to 5.

Task Difficulty
Create a new geometric figure (pyramid, star, cylinder) 1
Create a viewer for the figure (user-controlled object rotation and translation) 1
Create a FPS controller (mouse and keyboard control) 2
Implement backface culling 3
Implement filled geometry and object sorting 4
Implement per-vertex point lighting with a Lambertian model 5

and optimization. These issues are addressed in another course unit
[10].

As already stated, the NumPy and NumPy-Quaternion libraries
were selected for performance reasons. However, an alternative
approach would be to remove these dependencies, replacing them
with pure Python code. These libraries add a layer of complexity
and hide details that might be useful to expose students to. The loss
of performance might be offset by the increased readability, and
especially by allowing students to observe the internals of matrix
multiplication and quaternion math working in a real context –
something important at this stage of their education. Alternatively,
some sort of wrapper might be added to get the best of two worlds.

Another avenue being explored is hiding all of Pygame behind a
wrapper, so that students do not need to be aware of it while using
PyXYZ. Although our BA students learn Pygame in the PF course
unit, this change would widen PyXYZ’s usefulness in scenarios
where this library is not part of the curriculum. Thus, taking this
idea further, it might be worth building a complete layer that takes
care of the application setup and loop that abstracts the underlying
visualization and input library.

Custom polygon rendering, as an alternative to Pygame, would
also be a useful feature. This would turn PyXYZ into an excellent
tool for introducing students to the rasterization pipeline, instead of
focusing only on the transformation part of the rendering. Although
this idea has allure to it, there are performance concerns to consider,
so some experiments are required to determine if this is feasible.

Every curriculum has its own requirements and needs. The al-
ternative approaches discussed in this section are not meant as
definitive improvements to PyXYZ, but as paths which can be fol-
lowed to adapt PyXYZ to other teaching scenarios. In this regard,
PyXYZ can be considered not only a game engine template for stu-
dents to modify, create simple 3D games and learn math, but also
as a teaching tool template for educators to adapt to their needs.

6 CONCLUSIONS
In this paper we presented PyXYZ, a Python-based 3D wireframe
engine developed with the goal of supporting the teaching of math-
ematics and the transformation part of a rendering pipeline to game
development students from a wide variety of backgrounds.

PyXYZ can be a powerful tool for motivating students, as dis-
cussed in Section 4. It makes it relatively simple to achieve some-
thing interesting by modifying and playing around with the sample
applications, while stimulating students that are more interested
in the engineering part of the game development process to create

more complex applications. Although most students will end up
using commercial engines and for the most part not required to
know the intricacies of modern rendering, there are some tasks
that demand a knowledge of the rendering pipeline, like shader
programming. The insights gained while working on projects with
PyXYZ will help them understand the importance of mathematics
in game development, as well as the potential and limitations of 3D
game engines.

Finally, educators can adapt PyXYZ to different teaching contexts,
for example improving its performance by further integrating opti-
mized numerical libraries such as NumPy and NumPy-Quaternion;
or, conversely, making the code clearer by using the Python Stan-
dard Library for all vector and matrix operations. Even the Pygame
dependency can be removed, making PyXYZ a tool for studying
the rasterization pipeline via custom polygon rendering. In short,
PyXYZ can be viewed as a starting point and framework which
educators can adjust to their curricula.

ACKNOWLEDGMENTS
The authors would like to thank André Fachada for proof-reading
the text. The authors would also like to thank the anonymous
referees for their valuable comments and helpful suggestions. This
work is supported by Fundação para a Ciência e a Tecnologia under
Grant No.: UIDB/04111/2020 (COPELABS).

REFERENCES
[1] Petter Amland. 2017. Ursina. GitHub. https://github.com/pokepetter/ursina

Accessed: 2021-01-12.
[2] John Aycock, Etienne Pitout, and Sarah Storteboom. 2015. A Game Engine in

Pure Python for CS1: Design, Experience, and Limits. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education
(Vilnius, Lithuania) (ITiCSE ’15). ACM, New York, NY, USA, 93–98. https://doi.
org/10.1145/2729094.2742590

[3] Sarah E. Bamforth, Carol L. Robinson, Tony Croft, and Adam Crawford. 2007.
Retention and progression of engineering students with diverse mathematical
backgrounds. Teaching Mathematics and Its Applications: International Journal of
the IMA 26, 4 (2007), 156–166. https://doi.org/10.1093/teamat/hrm004

[4] Florian Berger and Wolfgang Müller. 2012. Towards an open source game engine
for teaching and research. In Transactions on Edutainment VIII. Springer, 69–76.

[5] Mike Boyle. 2018. The quaternion package: Add support for quaternions to python
and numpy (Version v2.0). Zenodo. https://doi.org/10.5281/zenodo.1220425

[6] Oswald Comber, Renate Motschnig, Hubert Mayer, and David Haselberger. 2019.
Engaging Students in Computer Science Education through Game Development
with Unity. In 2019 IEEE Global Engineering Education Conference (EDUCON).
IEEE, 199–205. https://doi.org/10.1109/EDUCON.2019.8725135

[7] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove, and Kevin
Christiansen. 2000. Alice: lessons learned from building a 3D system for novices.
In Proceedings of the SIGCHI conference on Human Factors in Computing Systems
(The Hague, The Netherlands) (CHI ’00). ACM, New York, NY, USA, 486–493.
https://doi.org/10.1145/332040.332481

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

524

https://github.com/pokepetter/ursina
https://doi.org/10.1145/2729094.2742590
https://doi.org/10.1145/2729094.2742590
https://doi.org/10.1093/teamat/hrm004
https://doi.org/10.5281/zenodo.1220425
https://doi.org/10.1109/EDUCON.2019.8725135
https://doi.org/10.1145/332040.332481

[8] Diogo de Andrade and Nuno Fachada. 2020. Fun maths for all game development
students. In Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education (Trondheim, Norway) (ITiCSE ’20). ACM, New
York, NY, USA, 529–530. https://doi.org/10.1145/3341525.3393992

[9] Paul E. Dickson, Jeremy E. Block, Gina N. Echevarria, and Kristina C. Keenan.
2017. An Experience-based Comparison of Unity and Unreal for a Stand-alone
3D Game Development Course. In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education (Bologna, Italy) (ITiCSE
’17). ACM, New York, NY, USA, 70–75. https://doi.org/10.1145/3059009.3059013

[10] Nuno Fachada and Nélio Códices. 2020. Top-down design of a CS curriculum for
a computer games BA. In Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
ACM, New York, NY, USA, 300–306. https://doi.org/10.1145/3341525.3387378

[11] Mike C. Fletcher. 2000. PyOpenGL. Sourceforge. http://pyopengl.sourceforge.net/
Accessed: 2021-01-12.

[12] Adam Griffiths. 2012. Py3D. GitHub. https://github.com/adamlwgriffiths/Py3D
Accessed: 2021-01-12.

[13] Junyoung Heo and Seukwon Kang. 2015. Simple shooting game engine in Python.
International Journal of Computational Vision and Robotics 5, 2 (2015), 130–137.

[14] Mitja Hmeljak. 2020. Developing a Computer Graphics Course with a Game
Development Engine. In Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
ACM, New York, NY, USA, 75–81. https://doi.org/10.1145/3341525.3387428

[15] Andri Ioannidou, Alexander Repenning, and David C. Webb. 2009. AgentCubes:
Incremental 3D end-user development. Journal of Visual Languages & Computing
20, 4 (2009), 236–251. https://doi.org/10.1016/j.jvlc.2009.04.001

[16] Roberto Junior. 2020. Projecto de IMFJ1. GitHub. https://github.com/robertojrdev/
imfj1_2019_projecto Accessed: 2021-01-12.

[17] Will McGugan. 2007. Beginning game development with Python and Pygame: from
novice to professional. Apress.

[18] Robert Nystrom. 2014. Game programming patterns. Genever Benning. https:
//gameprogrammingpatterns.com/

[19] Travis E. Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
[20] Ian Parberry. 2011. Challenges and opportunities in the design of game program-

ming classes for a traditional computer science curriculum. Journal of Game
Design and Development Education 1 (2011), 4–17. Issue 1.

[21] Ian Parberry, Timothy Roden, and Max B. Kazemzadeh. 2005. Experience with
an Industry-driven Capstone Course on Game Programming: Extended Abstract.
In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science
Education (St. Louis, Missouri, USA) (SIGCSE ’05). ACM, New York, NY, USA,
91–95. https://doi.org/10.1145/1047344.1047387

[22] Paul Pintrich. 2003. A motivational science perspective on the role of student
motivation in learning and teaching contexts. Journal of Educational Psychology
95, 4 (2003), 667–686. https://doi.org/10.1037/0022-0663.95.4.667

[23] David Rose et al. 2000. Panda3D. CarnegieMellon University. https://panda3d.org
Accessed: 2021-01-12.

[24] Dale Schunk, Judith Meece, and Paul Pintrich. 2013. Motivation in education
theory, research, and applications (fourth ed.). Pearson Education Limited.

[25] Bian Wu and Alf Inge Wang. 2012. A Guideline for Game Development-based
Learning: A Literature Review. International Journal of Computer Games Technol-
ogy 2012, Article 103710 (Dec. 2012). https://doi.org/10.1155/2012/103710

Curriculum – CS for All ITiCSE 2021, June 26–July 1, 2021, Virtual Event, Germany

525

https://doi.org/10.1145/3341525.3393992
https://doi.org/10.1145/3059009.3059013
https://doi.org/10.1145/3341525.3387378
http://pyopengl.sourceforge.net/
https://github.com/adamlwgriffiths/Py3D
https://doi.org/10.1145/3341525.3387428
https://doi.org/10.1016/j.jvlc.2009.04.001
https://github.com/robertojrdev/imfj1_2019_projecto
https://github.com/robertojrdev/imfj1_2019_projecto
https://gameprogrammingpatterns.com/
https://gameprogrammingpatterns.com/
https://doi.org/10.1145/1047344.1047387
https://doi.org/10.1037/0022-0663.95.4.667
https://panda3d.org
https://doi.org/10.1155/2012/103710

	Abstract
	1 Introduction
	2 Background
	3 PyXYZ
	3.1 Architecture
	3.2 Dependencies
	3.3 Basic usage and rendering process
	3.4 Sample applications
	3.5 Limitations
	3.6 Availability

	4 Field Trial
	5 Discussion
	6 Conclusions
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 49.73, 68.10 Width 249.59 Height 91.80 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 49.726 68.1042 249.5863 91.8018

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

