
NELSON DA SILVA TEIGAS MORAIS

PROTOTYPING AN INFORMATION CENTRIC

ARCHITECTURE FOR OPPORTUNISTIC

NETWORKS

Orientador: Prof. Dr. Paulo Mendes

Coorientador: Bruno Batista

Universidade Lusófona de Humanidades e Tecnologias

Escola de Comunicação, Artes e Tecnologias da Informação

Lisboa

2013

NELSON DA SILVA TEIGAS MORAIS

PROTOTYPING AN INFORMATION CENTRIC

ARCHITECTURE FOR OPPORTUNISTIC

NETWORKS

Tese apresentada para a obtenção do grau de Mestre

em Engenharia Informática no curso de Mestrado em

Engenharia Informática e Sistemas de Informação,

conferido pela Universidade Lusófona de

Humanidades e Tecnologias

Orientador: Prof. Dr. Paulo Mendes

Coorientador: Bruno Batista

Universidade Lusófona de Humanidades e Tecnologias

Escola de Comunicação, Artes e Tecnologias da Informação

Lisboa

2013

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 3

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Dedicatória

Á minha mulher, que esteve sempre presente e ao meu

lado em todos os momentos.

Às minhas duas filhas, por todo o amor que me dão

desde o dia em que nasceram.

Aos meus pais, por tudo o que me ensinaram ao longo

destes 40 anos, e a quem devo muito do que sou.

Ao meu irmão, amigo eterno.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 4

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Acknowledgments

Colleagues, Friends and Teachers

During my bachelor and master degrees was fortunate to have found people who helped me in

several ways to achieve my goals. For them, here are my words of appreciation and recognition.

To my two colleagues and friends that were with me during my bachelor degree, Hélder and

Gustavo, big fellows in the several challenges that we have faced together, and from whom I

keep with great pleasure the moments we shared.

To my colleague and friend, Ricardo Barbosa, with whom I exceeded what I thought were

insurmountable barriers.

To my friend Vítor Castro, fellow of great discussions and with whom I explored many of the

projects I have done.

To teacher Dr. José Rogado for all the knowledge transmitted on all these years, and for the

opportunities provided to exceed myself.

To teacher Vítor Santos, for everything he taught me and for the trust he always raised on me.

To teacher Dr. Paulo Mendes, without him this dissertation would not be a reality. He opened

my horizons to areas that were outside of my knowledge.

To teacher Bruno Batista for all the support given during the work done on this dissertation.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 5

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Resumo

Morais, Nelson. PROTOTYPING AN INFORMATION CENTRIC

ARCHITECTURE FOR OPPORTUNISTIC NETWORKS. Lisboa. 2013, 97 páginas.

Monografia, ULHT – Universidade Lusófona de Humanidades e Tecnologias.

A arquitetura atual das redes informáticas, que serve de suporte à maioria dos sistemas

de informação, assenta num modelo de comunicações ponto a ponto e no qual a informação é

transmitida em pacotes de dados que contêm informação sobre a origem e o destino dos

mesmos. Este paradigma não se ajusta às necessidades de processamento de informação com

que nos deparamos diariamente nos dias de hoje. Atualmente, a informação é ubíqua e os meios

de acesso à mesma são efetuados cada vez mais com recurso a dispositivos móveis que

comunicam sobre redes intermitentes ou pouco estáveis. A última década tem sido propícia ao

aparecimento de propostas baseadas em novas formas de distribuição e acesso à informação

com base em redes movidas pelo conteúdo da própria informação. Esta tese analisa uma dessas

propostas e utiliza-a como base para a criação de um protótipo de uma rede desse tipo,

direcionada para sistemas que operam em multiplataformas e sobre redes oportunistas.

Palavras-chave

Redes, Centradas, Orientadas, Conteúdo, Informação, Dados, Multiplataforma, Oportunistas

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 6

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Abstract

Morais, Nelson. PROTOTYPING AN INFORMATION CENTRIC

ARCHITECTURE FOR OPPORTUNISTIC NETWORKS. Lisbon. 2013, 97 pages.

Monograph, ULHT – Universidade Lusófona de Humanidades e Tecnologias.

The current architecture of computer networks, which supports the majority of

information systems, is based on a model of peer to peer communications and in which

information is transmitted using data packets that contain information about its origin and

destination. This paradigm does not fit the needs of information processing that we face every

day nowadays. Currently, information is ubiquitous and the mobile devices are used even more

to establish communications over intermittent or unstable networks. The last decade has been

conducive to the emergence of proposals based on new forms of distribution and access to

information based on networks driven by the content of the information itself. This dissertation

examines one of these proposals and uses it as a basis for the creation of a prototype of such a

network, targeted to systems that operate on multiplatform and opportunistic networks.

Keywords

Networks, Content-Centric, Information, Data, Multiplatform, Opportunistic

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 7

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Abbreviations

ADU – Application-layer Data Units

CCN – Content Centric Networks

CCNx – Content Centric Network project

CPU – Central Processing Unit

ECATI – Escola de Comunicação Arquitetura Artes e Tecnologias da Informação

DONA – Data Oriented Network Architecture

DI – Dependency Injection

DTNs – Delay/disruption Tolerant Networks

FIB – Forwarding Information Base

HTML – Hypertext Markup Language

HTTP – Hypertext Transfer Protocol

ICON – Information Centric architecture for Opportunistic Networks

IoC – Inversion of Control

ISP – Internet Service Provider

IL – Intermediate Language

JIT – Just In Time

MSIL – Microsoft Intermediate Language

NDN – Named Data Networking

OSI – Open Systems Interconnection

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 8

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

PIT – Pending Interest Table

SCF – Store Carry and Forward

RFCOMM – Radio frequency communication

RPC – Remote Procedure Call

SITILabs – Research Unit in informatic Systems and Technologies

TLS/SSL – Transport Layer Security / Secure Sockets Layer

UDP – User Datagram Protocol

ULHT – Universidade Lusófona de Humanidades e Tecnologias

Uri – Uniform Resource Identifier

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 9

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Contents

1 Introduction .. 15

1.1 Technical Background ... 16

1.1.1 Content Centric Networks .. 16

1.1.2 Opportunistic Networks .. 16

1.2 Objectives .. 18

1.3 Document structure .. 19

2 Content Centric and Opportunistic Networks .. 20

2.1 Named Data Networks and the CCNx project ... 21

2.1.1 Names ... 23

2.1.2 Routing and Forwarding ... 24

2.1.3 Caching ... 25

2.1.4 Pending Interest Table – PIT .. 26

2.1.5 Transport ... 26

2.1.6 ICON Framework and the CCNx project ... 26

2.2 Opportunistic networks and the Haggle project .. 28

2.2.1 Haggle Network Architecture ... 29

2.2.2 ICON Framework and the Haggle project .. 30

3 The ICON Framework .. 32

3.1 Introduction .. 32

3.2 Protocol .. 35

3.2.1 Message format and encoding .. 36

3.2.2 Content Identification ... 37

3.2.3 Message Types ... 37

3.2.4 Data exchange between nodes .. 38

3.3 Node Model ... 40

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 10

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

3.3.1 Decision Engine .. 40

3.3.2 Data Engine .. 42

3.3.3 Network Engine .. 45

4 ICON Framework Implementation and Usage ... 49

4.1 Implementation .. 50

4.1.1 Decision Engine .. 51

4.1.2 Network Engine .. 51

4.1.3 Data Engine .. 54

4.2 Source code and the project structure .. 58

4.2.1 Dependency Injection ... 58

4.2.2 Protocol ... 60

4.2.3 Network .. 60

4.3 Using the ICON Framework .. 63

4.4 Node information available at runtime .. 66

5 Testing the ICON Framework .. 68

5.1 Test configuration .. 68

5.2 Test description .. 70

5.3 Profiling code and optimizations ... 72

5.4 Performance tests ... 75

5.4.1 Tests summary .. 76

5.4.2 Test Set 1 .. 79

5.4.3 Test Set 2 and 3 .. 80

5.4.4 Test Set 4 and 5 .. 82

5.4.5 Test Set 6 .. 84

5.4.6 Test Set 7 .. 86

5.4.7 Test Set 8 .. 87

5.4.8 Test analysis summary ... 88

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 11

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.5 Other tests performed ... 90

6 Conclusions .. 92

7 Bibliography ... 94

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 12

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Table Index

Table 1 – ICON Framework Name examples .. 37

Table 2 – Simplified view of the PIT ... 43

Table 3 – Nodes configuration for running tests .. 69

Table 4 – Test results .. 78

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 13

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure Index

Figure 1 - CCN Messages ... 21

Figure 2 - CCN Node ... 21

Figure 3 - OSI model redefined for CCN based networks ... 23

Figure 4 - FIB table on a CCN Node .. 24

Figure 5 - Search-based resolution primitives .. 29

Figure 6 - Haggle network architecture .. 29

Figure 7 - ICON Framework architecture design that defines the network Node 34

Figure 8 - ICON Framework architecture design ... 40

Figure 9 - Handle Interest message .. 47

Figure 10 - Handle Content message .. 48

Figure 11 - ICON Framework prototype implementation .. 50

Figure 12 - C# interface definition of the Communication Interface control manager 51

Figure 13 - Worker thread to resend Interest messages ... 52

Figure 14 - Configuration file to configure Communication Interfaces and the FIB table 53

Figure 15 - C# interface definition of the FIB manager ... 53

Figure 16 - C# interface definition of the Content Store component manager 54

Figure 17 - C# interface definition of the PIT manager ... 55

Figure 18 - Remove expired PIT entries worker process ... 56

Figure 19 - C# interface definition of the Segmenting component .. 57

Figure 20 - ICON Framework project structure ... 58

Figure 21 - Registering Module types .. 59

Figure 22 - Detailed view of the types defined under Protocol .. 60

Figure 23 - Interfaces and Classes defined under Network .. 62

Figure 24 - Sample of Communication Interfaces Node configuration 64

Figure 25 - Sample code to have a Node as a Content producer .. 65

Figure 26 - Sample code to have a Node as a Content consumer .. 65

Figure 27 - HTTP response sample containing general Node information 67

Figure 28 - HTTP response sample containing detailed PIT information 67

Figure 29 - HTTP response sample containing locally stored Content details 67

Figure 30 - Network Nodes setup ... 69

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 14

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure 31 - Network Nodes & applications running on each one .. 71

Figure 32 - Hot paths and functions with most work before code optimizations 73

Figure 33 - ListenerHandler function analysis before code optimizations 73

Figure 34 - ProcessInterestMessage function analysis before code optimizations 74

Figure 35 - GetContent function analysis before code optimizations 74

Figure 36 - Hot paths and functions with most work after code optimizations 75

Figure 37 - Graphical analysis for test set 1 ... 79

Figure 38 - Graphical analysis for test set 2 ... 81

Figure 39 - Graphical analysis for test set 3 ... 81

Figure 40 - Graphical analysis for test set 4 ... 83

Figure 41 - Graphical analysis for test set 5 ... 83

Figure 42 - Graphical analysis for test set 6 ... 85

Figure 43 - Graphical analysis for test set 7 ... 86

Figure 44 - Graphical analysis for test set 8 ... 88

Figure 45 - Video streaming apps... 91

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 15

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

1 Introduction

Nowadays a large amount of people uses the Internet for some kind of activity –

business or pleasure – on a daily basis. The Internet moved from the bulky desktop computer

to more pervasive devices like our smart phones or some form of embedded device that, for

instance, can be found in the increasingly popular intelligent buildings, in our homes – fridges,

laundry machines, domotic systems, etc. – or on the street for monitoring purposes, advertising,

etc.

The increase capabilities in terms of CPU, storage and communication capabilities of

these devices means for one hand, that they can be consumers and producers of information,

and on the other hand, exacerbates, among others, problems related with mobility and

opportunistic networks where users take advantage of the diverse communication, computation,

sensing, storage and other resources that surround them to produce and share information.

Looking to when and how people use the Internet – and network systems in general –

a clear mismatch can be found. People only care about obtaining information and they do not

care where the information is. From the network point of view the location is essential to find

the requested content, thus when a person asks for content by name, that name has to be resolved

to a location, an identifier that the network can understand. Moreover, the current network

architecture, which has a dependency of the host location, is far from ideal in scenarios where

hosts are very mobile, have a multitude of communication interfaces with very different

technologies that need to work in a seamless way and have intermittent connectivity like ad-

hoc and opportunistic networks.

This dissertation aims to address the problems of data communications found on such

network architectures. It explores a network protocol where data flows across the network are

based on the message content in contrast to the host location. Using this principle, we can persist

data across the network as it flows between consumers and producers, because there is no host

location dependency on the network packages. This avoids data retransmission through all

network nodes every time a connection is lost. By removing the host location from the network

packets, we can also reuse the content data of the network packets to deliver it to more than one

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 16

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

host and at different periods in time, improving network traffic by reducing the number of

packet transmissions between consumers and producers. Mobile hosts can benefit with this new

way of transmitting data. As packets that were not received due to network communication

interruptions are now available on the network, mobile hosts have now a better chance to

receive these packets since they will be delivered from a closer network node, instead of having

to travel again from the producer.

1.1 Technical Background

1.1.1 Content Centric Networks

Current communication networks are evolving towards a more dynamic and mobile

model, in which people aim to get access to collections of digital content and services, anyplace

and at any time. However, the communication in mobile networks implements connections

between machines, not location-independent access to content. This mismatch between the

structure and use of networks causes complexity for applications and ineffective use of

available bandwidth.

In recent years content-centric networking has gained momentum and several

proposals arose, where some of the most prominent are:

 Content Centric Networking – CCNx [1]

 Named Data Networking – NDN [2]

 Haggle [3]

 NetInf [4]

This new paradigm that make content retrieval by name, not location, will change the

architecture and the fundamental operation of networks.

1.1.2 Opportunistic Networks

Life style in modern society is creating an increasing demand for users to have constant

capability to exchange information. However, providing pervasive connectivity to users that

have a dynamic behavior is challenging since most social and technological networks display

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 17

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

topologies with patterns of connection between nodes that are neither purely regular nor purely

random.

Examples of such networks are online social networks and Delay/disruption Tolerant

Networks – DTNs [5]. DTNs are an example of opportunistic networks of self-organizing

wireless nodes connected by multiple time-varying links, and where end-to-end connectivity is

intermittent. Even in urban scenarios, it is possible to face intermittent connectivity due to dark

areas, such as inside buildings and metropolitan systems, as well as public areas with closed

access points or even places overcrowded with wireless access points. Unavailability of

wireless connectivity can be also a result of power-constrained nodes that frequently shut down

their wireless cards to save energy.

Due to intermittent connectivity, network architectures based on the knowledge of end-

to-end paths perform poorly, and numerous opportunistic routing algorithms have been

proposed instead [6] [7]. Some opportunistic routing protocols use replicas of the same message

to combat the inherent uncertainty of future communication opportunities between nodes [8]

[9]. In order to carefully use the available resources and reach short delays, many protocols

perform forwarding decisions using locally collected knowledge about node behavior to predict

which nodes are likely to deliver content or bring it closer to the destination [10]. In an

information-centric approach, such destinations are reachable when they disseminate in the

network their willingness to receive data, being such data defined by a set of parameters, such

as type and users interests. To operate in an opportunistic network, nodes must have enough

processing power and storage to keep data until another good intermediate carrier node or the

destination is found [11], following a store-carry-and forward – SCF – paradigm.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 18

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

1.2 Objectives

This dissertation aims to implement a prototype of an information centric architecture

for opportunistic networks, called ICON [12]. The architecture is based on ideas extracted from

the CCN / NDN and Haggle projects, which will be combined and enhanced. The goal is to

extract from Haggle the modular flexibility of its architecture to operate in opportunistic

networks and from NDN some of the basic communication elements, such as the forwarding

and interest structures.

The prototype runs on Windows, Linux and Mac OS operating systems with

Microsoft.NET Framework or Mono installed. To achieve such goal, the architecture was

developed in C# targeting the Microsoft.NET framework subset implemented by Mono [13].

Mono is a software platform designed to allow developers to easily create cross platform

applications. Mono is an open source implementation of the Microsoft.NET Framework based

on the ECMA standards for C# and the Common Language Runtime.

To achieve the desired cross platform transparency in ICON, which is a key difference

from Haggle and CCN / NDN projects, the ICON prototype code was compiled to target the

Microsoft.NET Framework using the Mono subset library to ensure the cross platform

execution. By compiling the code in this way, we get code compiled to an Intermediate

Language – IL –, which will be compiled upon execution on the runtime environment by a

process called Just In Time – JIT – compilation. For this reason the code compiled, is valid to

be executed without requiring code changes or code recompilation on systems where

Microsoft.NET Framework is installed, but also on systems where Mono is available. The

development of the solution was done using Microsoft Visual Studio 2010 and 2012, but

MonoDevelop can also be used as an alternative. The code was compiled to ensure

compatibility with Monodroid for Android, which along with MonoTouch for iOS, are a subset

of the Mono framework and consequently, a subset of the Microsoft.NET Framework. For these

two platforms, further tests must be taken to ensure the system is fully operational under those

environments, as the prototype developed under this project did not made any execution tests

on such platforms.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 19

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

1.3 Document structure

 The second chapter briefly discusses the Named Data Networking Project [14] and some

of the most relevant projects around content centric networks, with a major focus on the

CCNx project. Opportunistic networks and the project Haggle [3] are also introduced in

this chapter.

 The third chapter introduces the Content Centric Network framework developed during

this dissertation, which was called ICON – Information Centric architecture for

Opportunistic Networks. It introduces its roots, architecture, and main components.

 The fourth chapter contains implementation details of the ICON Framework, including

code extracts from the prototype source code, the development environment and tools

used to achieve the final bits. It also identifies the major implementation issues found

for the targeted platforms and explains why not all of initial goals were met.

 The fifth chapter describes how and on which environments the ICON Framework was

tested.

 The sixth chapter presents the conclusions, including achieved goals, presentations done

at the CCNxCon 2012 conference in the INRIA Sophia Antipolis, France [15] and at

the CCNxCon 2013, Palo Alto, USA [16].

References and citations in this document were made using the IEEE style.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 20

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

2 Content Centric and Opportunistic Networks

Content centric networks also known as content based networks, named data networks,

information centric networks or even data oriented networks, are a new paradigm on how

computer networks should be organized to better achieve today’s requests for digital

information.

Most of today’s computer networks and Internet in particular, have their roots based

on telephone networks, as such, the architecture is based on hosts and the connections

established between them in order to transmit data. The Internet Protocol allowed us to establish

communications worldwide, which combined with all the other protocols on top or around it

exceed all expectations for ubiquitous connectivity. Nevertheless, this architecture with some

of its surrounding protocols has now more than fifty years and as a consequence, today it is

barely used for its original purposes. Nowadays, the challenges are different, the request for

information has increased dramatically and people ask for data, and they do not want to know

where it is hosted anymore. Through the years several changes were made to allow such

requirements but current data communication patterns demand a new architecture to better

address current needs.

In recent decades several projects were created to address this, the DONA – Data-

Oriented Network Architecture [17], the TRIAD [18], the NetInf [4], the CCN – Content

Centric Networking [19], are all distinct proposals on how to embrace this new challenge. Of

those, the later was a fundamental reference for this dissertation.

In the context of opportunistic networks, project Haggle [3] propose a set of

architectural principles, for pocket switched networks, based on asynchronous data-centric

network architectures, which raise the application programming interface to a level where

applications can provide the network with application-layer data units – ADU’s, with high-level

metadata concerning ADU identification, security and delivery to user-named endpoints. Such

architecture, composed by a set of modular managers to build the core of the system, also

inspired the work developed under this dissertation where a set of engines with their

components build the core of the proposed framework.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 21

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

2.1 Named Data Networks and the CCNx project

CCNx [20] is an open source project in early stage development exploring the next

step in networking which is based on one fundamental architectural change: replacing named

hosts with named content as the primary abstraction.

The architecture behind CCNx and the Named Data Networking Project – NDN [14]

in particular, were major resources to the development of this dissertation. Explaining some of

its core components and concepts with an emphasis on the most relevant parts herein is required

step to understand the work developed under this dissertation.

Figure 1 and Figure 2 show most of the

fundamental elements of the NDN architecture.

Figure 2 represents a complete CCN Node and

Figure 1 illustrates the only type of messages

switched between those Nodes.

Figure 2 - CCN Node

Figure 1 - CCN Messages

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 22

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Following the principles described in the Named Data Networking Project, CCNx

Nodes exchange data with each other using a protocol that does not require any knowledge

about the hosts where the data passes through in order to send or receive data. To achieve that,

the CCNx architecture can be divided into six major areas:

 Names

 Security

 Routing and forwarding

 Caching

 Pending Interest Table

 Transport

Excluding the security, which will not be discussed here despite its major role in this

architecture, all the other areas will be addressed to open the door to what was implemented in

the ICON Framework, but before discussing each of these areas, we need to understand how

communications are processed in a network based on CCNx Nodes.

Every communication in CCNx is initiated by the receiver, the one who will consume

and process the data it requests. To achieve that it must send to the network its intention to get

some data, and for that it issues an Interest to the network which eventually will be satisfied.

An Interest message is essentially a Name that identifies the Content to be retrieved. A Name

is mainly a set of hierarchical components, which uniquely identify some Content. Once the

Interest is sent, routers on a CCNx network will store the Face where the message arrives and

will forward the Interest to other Node(s) based on its Forwarding Information Base – FIB table.

When the Interest arrives to the producer, the one capable to produce or retrieve the requested

data, a Data message containing the name of the data, a signature, the signer info and the data

itself, is sent back to the Face where the Interest message arrived. On the network, the Data

messages make the reverse trajectory until they reach the consumer who asked for the Interest.

This trajectory is done based on the Name contained in the Data message along with the

information that was temporarily persisted on the Nodes to where the Interest was sent. To

improve network efficiency, if a Node receives the same Interest while it is waiting for a

response for an equal Interest, the Interest received will not be forwarded again but the Face

where it has arrived will be stored internally in the Pending Interest Table – PIT. Once the Data

packet is received, and a PIT entry exists for it in the Node, the Faces stored with the PIT entry

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 23

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

will have the Data packet forwarded to all of them and the PIT entry is removed. The Data

packet is also stored locally on the Node’s local storage, allowing new Interests to be served

directly from this local cache whenever their Name corresponds to the Name of a Data packet

previously stored. Finally, Faces represent communication interfaces to the Node’s outside

world, and this can be wireless and/or wired networks or applications.

This networking paradigm also

redefines the Open Systems

Communication – OSI model, by

structuring the layers in such a way that

removes the bottleneck from the current

Network layer, and moves the universal

component of the network stack from IP

to chunks of named content. Figure 3 illustrates the comparison between the two models.

2.1.1 Names

Names represent the most important piece in the NDN architecture and are still under

active research; in particular, how to define and allocate top level names remains an open

challenge [14]. Top level names are the gate that opens the door to the definition of global

unique names, but Name uniqueness is not required, unless for data retrieved globally, because

applications can define profiles that specify naming conventions to be used to exchange their

data. Applications can choose the naming schemes they want, and according to their needs, but

the NDN design assumes hierarchically structured names, which in a human readable format

can be represented like ‘/ulht/ecati/siti/videos/ICON_Video’. The name hierarchy allows the

routing mechanism to scale and at the same time provides useful information for applications,

like the relationships between pieces of data. The names are only meaningful for the

applications and are completely opaque to the network, which means routers do not know the

meaning of a name, only the boundary of its components is known. Dynamically generated

data, like a live video stream for instance, require the Names to be defined in a deterministic

way, which means, applications must agree on an algorithm to allow both the consumer and the

producer to reach to the same name for the same piece of content, or, consumers must be able

to retrieve data based on partial names.

Figure 3 - OSI model redefined for CCN based networks

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 24

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Below is a text representation of a Name sample, providing access to the first release

of the third segment of a video produced by the Universidade Lusófona de Humanidades e

Tecnologias – ULHT, in the Sistemas e Tecnologias Informáticas – SITILabs, of the Escola de

Comunicação Arquitetura Artes e Tecnologias da Informação – ECATI School:

 /ulht/ecati/siti/videos/ICON_Video_Demo_Win8_Ubunto_MacOS.wmv/1/3

Each forward slash separates the components who define the Name and its hierarchy.

2.1.2 Routing and Forwarding

Routing and forwarding packets are based on names, which eliminates four problems

that addresses pose in the IP architecture: address space exhaustion, NAT traversal, mobility,

and scalable address management [14]. Has the names do not have an upper boundary defined,

which means they do not have a limit on their size, the space address limit imposed by the IP

architecture do not exist on this architecture. NAT is not required since host addresses are no

longer exposed or transferred between network Nodes communications. Mobile devices, with

frequently changing IP addresses will benefit from the fact that data transmission will not rely

on such information to successfully transmit data. Data is transferred based on their Name and

not from where it came from or goes to. Such a fact will improve the communications since

data transfers will not be broken due to address changes. Sensor networks, which require

address assignment and management is now dispensable, which will bring benefits for its

maintainability. CCN Nodes maintain a FIB table, which stores the forwarding information

required to send Interests to the network, this

table is composed by a list of Name prefixes

and each prefix contains a list of all the Faces

that can satisfy it on the network, Figure 4

highlights the graphical representation of the

FIB table on a CCN Node. Routing

protocols, similar to those we have today for

IP routing, can be used to announce the

Nodes capability to forward Interests, this can be done using specific Name schemes, which

once defined could be used to let Nodes know which Interests can be satisfied by whom. Due

to the unbound nature of Names, where no length limit is established, there is an extra challenge

Figure 4 - FIB table on a CCN Node

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 25

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

of how to maintain the FIB table size scalable to the number of data names it stores, because

the longer the Name length is more memory is required to store data in the FIB table. ISP-based

aggregation and exploiting the Name space and network structures are two proposed approaches

to address this problem, and belong to the research agenda of the NDN project. In contrast to

IP, NDN also natively supports multipath routing and without the risk of looping within the

network, since Data packets make the reverse path of the Interests requests they reply to. This

opens a new world for algorithms to explore such capacity, which have its space reserved under

the Forwarding Strategy layer of the NDN project [14].

2.1.3 Caching

Data packets are stored in the Node Content Store once data is received. As data is

identified by their Name, Interests requesting the same data can be served by data stored locally,

avoiding round trips to content producers. This will improve response times, as data will be

closer of the consumers and spread across the network. Not only this will improve data retrieval

for static data, it will also benefit dynamic content, mostly for multicast scenarios where the

same data is transferred across several consumers.

When a cache miss occurs, a lookup on the FIB table is made to check if the Node can

satisfy the Interest requested. If the FIB table contains an entry that can satisfy the interest,

which means that there is a prefix in the FIB table that fully or partially matches the Name of

the Interest, then an Interest message is sent to the Faces associated with that entry and a record

is added to the PIT table. This record contains the Name and the Faces to where the Content

message should be sent to satisfy the Interest. When a cache miss occurs, and no match if found

in the FIB table, then the process ends and the Interest request will not be satisfied by the Node.

Cache management is an area still under development, but previous work developed

on this area suggested a least-recently-used or least-frequently-used policies to be the desired

policies, nevertheless a simpler approach based on random removal from the cache are also to

be tested and validated to see if it performs as nearly as well. [21]

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 26

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

2.1.4 Pending Interest Table – PIT

The PIT contains the Faces where Interests have arrived and for which the Data packets

must be sent once received. It plays a fundamental role on the overall architecture as it provides

the ability the send fewer requests to the data producers while it caches all similar Interest

requests until data is produced and retrieved by the producers. PIT entries should not live longer

than the expected packet round trip in order to maximize the PIT usage. At the same time, they

should not time out prematurely or packets will be lost, as received Data packets without a

corresponding PIT entry will be discarded, although they are stored locally. It is also the base

support for natural multicast, as it caches all the Faces who required a certain content, which,

upon received, will be set to all the cached Faces of the PIT entry. Once the Data packets are

sent to the PIT entry cached Faces, the PIT entry and the Faces it stores are removed. A PIT

entry only exists if the Interest could not be satisfied from the local Content Store. The PIT

provides another piece of important information that can be used to control the Node’s traffic,

the number of PIT entries identify the Node’s congestion. This information can be used by the

Forwarding Strategy to adjust network traffic.

2.1.5 Transport

The NDN architecture does not have a separate transport layer. Applications, their

supporting libraries and the Forwarding Strategy layer take the responsibility of today’s

transport protocols. Data can be transferred on top of any data link layer or superior of the OSI

model, as such, no reliable transmission channel is required, and the highly dynamic networks

like those where mobile devices mostly operate are natively supported. As a consequence,

reliable communications must be supported at the application level, where apps have the task

to resend Interest requests when Data packets are not received, and if they are still meaningful.

A lower level alternative exists at the Forwarding Strategy layer, which, with the gathered

information, will be able to choose from the available Faces the best one to be used to retransmit

the Interests.

2.1.6 ICON Framework and the CCNx project

The ICON Framework is based on some of the concepts defined on the CCNx project,

which were found useful for its definition and implementation. In essence, the protocol

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 27

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

definition to support Content Centric Networks, along with the fundamentals of some of the

structures behind it, where brought to the ICON Framework. However, the ICON Framework,

pretends to be modular, cross-platform and simple to use, so despite the CCNx project had

influence it, some changes and enhancements were introduced to achieve its goals. Both

sections containing the ICON Framework description and implementation, will provide more

details on the similarities between both projects, but for now these are the concepts that the

ICON Framework will get from the CCNx project:

 A hierarchical Name definition to identify and request for content;

 A Interest message that describes the intent to get some content;

 A Content message that carries content identified by a Name and without identifying

the source or destination hosts in anyway;

 A data transmission protocol based only on Interest and Content messages;

 The Faces that represent the abstraction of communication interfaces;

 A Content Store, to persist data locally. Data stored in this cache can be sent to other

requesters when they ask for the same content;

 A Forwarding Information Base, to act as the routing mechanism;

 The Pending Interest Table, to manage pending Interests sent to the network and that

are waiting to be satisfied;

 Some of the principles behind the Strategy Layer, like managing the cache retention

policy. The ICON Framework Decision Engine is where we can find some of the

functionalities similar to those that exist on the Strategy Layer

In terms of serialization, the ICON Framework did not opt for the solution

implemented in the CCNx project, where a custom serialization was defined. The ICON

Framework uses an already known serialization process that provided the efficiency required

by the platform, more details on the serialization process used can be found in The ICON

Framework section.

To achieve modularity and a network node model based on three engines, the concepts

brought by the CCNx project were also organized differently. The ICON Framework and the

ICON Framework Implementation and Usage sections both provide details on what is an ICON

Framework node and how it was designed to support modularity.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 28

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Cross-platform using the same compiled code is also a difference between the CCNx

project and the ICON Framework. The ICON Framework was developed in C# and compiled

using the .NET Framework to support such functionality.

2.2 Opportunistic networks and the Haggle project

The Haggle project approach to opportunistic networks is based on dissemination of

searches to share content directly between intermittently connected mobile devices. The project

is based on two pillars, the first is searching technologies and the second is a new network

architecture and paradigm that provides a better support for opportunistic networks.

In Haggle, data that is stored locally or that is disseminated to the network contains

metadata attributes that will be used to perform queries against it. The metadata is based on a

set of attributes in the form of key value pairs, which at the end describe the data where they

are attached to. In Haggle this tuple of metadata plus data is called a data object. Searching is

then based on data objects by looking at their metadata, and when a search is performed, it

results in a ranked list of data objects relevant to the query.

Data objects are stored in Haggle nodes, which are the devices where the Haggle

platform is running, and data objects are stored in a relation graph where they are connect to

each other by a relation. This relation might have a weight to define the strength between two

data objects, and this strength is determined by looking at the number of shared attributes that

exist in both data objects, so the more the shared attributes the higher will be the value of this

weight. Haggle nodes are also considered data objects and are called node descriptors; the node

descriptors contain on their metadata the combined application interests of a node. Application

interests are the set of registered attributes that an application can register, and will work as

keys to perform the search queries against the data objects. Node descriptors are sent to every

a new node that a node discovers.

Haggle defines a set of primitives to perform its search-based resolution. A first set of

primitives allows the insertion of data objects and node descriptions in the relation graph of the

node. A second set exists to map data objects to nodes and vice versa, and these are called

resolve primitives. The resolve primitives are named rd to resolve data objects and rn to resolve

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 29

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

nodes. Figure 5 shows how these

primitives are used in Haggle

applications, where the pushed-

based data dissemination service

that exists in Haggle sends to the

applications the data objects that

match their interests.

2.2.1 Haggle Network Architecture

The Haggle network architecture is based on a modular paradigm where the core

system results from the aggregation of a kernel and a set of managers responsible for the

different aspects of the system. Figure 6 shows the Haggle architecture where a kernel exists in

the middle, and processes the messages that are sent to the event queue by the set of managers

that live around him. Managers communicate with each other via the message queue of the

kernel. The kernel also contains a local store

where the relation graph of the node is

persisted. Search queries are done on top of this

storage to retrieve a ranked set of data objects

that satisfy the search criteria. Core types are

specified in the kernel, like the attributes that

define the metadata of a data object, the node

descriptors and the interfaces that abstract the

communication with other peers. Interfaces can

be physical, like an Ethernet or Wi-Fi network

card, or can be a logical representation

provided by an inter-process communication

mechanism, like a socket or a pipe. This

architecture promotes modularity because any

manager can be easily replaced or added when

new functionality is required.
Figure 6 - Haggle network architecture

Figure 5 - Search-based resolution primitives

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 30

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Applications communicate with Haggle via the libhaggle API. This hides the

complexity of the network from the applications. To support this, Haggle uses a Application

manager that acts as a proxy between the application and the network architecture to exchange

data objects or events. Other managers have different responsibilities:

 The Connectivity manager for instance, is responsible to discover local and remote

network interfaces and provide the infrastructure with the capacity to communicate with

other nodes;

 The Protocol manager is responsible to send and receive data objects, it uses TCP for

communications when using the Ethernet and Wi-Fi interfaces, RFCOMM for

Bluetooth and UDP for local inter process communications;

 The Resource manager handles information about the device, like power battery,

available storage and bandwidth, and can change the behavior of the node to ensure that

the resources are used appropriately and in an efficient way;

 The Node manager gathers information about discovered nodes, and tries to exchange

node descriptors every time a new node is found on an interface, it also manages an

internal list of active nodes and adds the discovered nodes to the relation graph of the

node

2.2.2 ICON Framework and the Haggle project

The network architecture design of the Haggle project depicts a clear separation of

responsibilities in a network node. By assigning such responsibilities to specific managers,

which can be replaced or extended with new ones if needed, the architecture provides a modular

framework that shows how it can be improved or raised to provide new functionalities. This

modular design inspired the network architecture that can be found on the ICON Framework.

The ICON Framework section exhibits changes that were made to this network model, showing

how the overall set of components are organized on the network node model definition that it

defines. In a brief introduction to these changes, we will see that instead of having a central

kernel, which all the other managers communicate with to interact with each other, the ICON

Framework network node model defines an aggregator kernel composed by three engines, each

containing their own set of components to perform specific tasks. This provides a more

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 31

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

aggregated view of the network node, but at the same time, maintains the modularity aspects

that provide the flexibility demonstrated on the Haggle project.

The ICON Framework will not use the search-based data dissemination framework

present in Haggle. The reason behind this decision relies in the fact that the Haggle project is

more focused in exploring a better way of spreading data in opportunistic networks, using for

that, a push mechanism to send data to the devices that express interests matching that data.

Such data is then selected using a ranked search algorithm to identify the data objects to be

pushed. The paradigm for the ICON Framework is different: the goal was not to merely

disseminate data across nodes, but to have a framework that can be used in opportunistic

scenarios, sustained by a network protocol resilient to the network interruptions that exist in

such environments, so that data can be sent across the network devices in a more efficient way

than what we have today with the traditional network protocols. To achieve such goal, the

choice was to use some of the concepts that guide the CCNx project, which seemed more

appropriate, instead of using the search-based framework presented in the Haggle project.

These are the concepts that the ICON Framework will use from the Haggle project:

 Network design architecture;

 Modularity;

 Flexibility;

 Abstraction of network complexity;

 A network kernel;

 API to be used by applications

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 32

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

3 The ICON Framework

This chapter describes the ICON Framework, its architecture, and main components.

3.1 Introduction

The ICON Framework is heavily inspired on the CCN Node Model [19] found on the

CCNx architecture, in particular it is based on the fundamental components and principles

present on the CCN Forwarding Engine Model, which are the Faces, the Content Store, the

Pending Interest Table and the Forwarding Information Base. More than getting these structural

elements from the CCN Model, also the core messaging components of the CCN Model –

Interest and Content Object messages – where brought as vital infrastructure elements to the

ICON Framework architecture – Interest and Content – , as these are also the only type of

messages transferred between ICON Nodes.

The modularity features found on the Haggle platform [3], which brought more

flexibility to a system where opportunistic communications are the main focus, were also

present since the beginning of the architecture design of the ICON Framework. As opposed to

the CCN Model, where components modularity cannot be found, Haggle based their entire

architecture on individual components – Haggle Managers, who communicate with each other

using the event driven messaging pattern [22].

Despite the ICON Framework brought some of its concepts from the CCN Node

Model and the Haggle platform, it innovates by combining them and introducing new ones in

a new framework. The ICON Framework goes beyond the modularity concepts found in Haggle

and extents this concept; it uses dependency injection to automatically load the modules at

runtime, according to the application needs. Multithreading is also part of the ICON Framework

foundations, ICON Nodes can process requests concurrently and they also create worker

processes internally to monitor the PIT in several ways as will be described during the ICON

Framework Implementation section. Applications have also the capacity to define their own

custom implementations of the core modules, for cases where the provided ones do not fit the

in the application requisites, and where such customizations might be preferred to run on

specific devices or environments. If needed, the modules can also be switched at runtime to

allow the Node to adjust himself to a new network environment, where a change in the Node

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 33

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

behavior provided by a different module implementation might be appropriate. Changing

modules at runtime, by using the dependency injection functionality, can be done by the

Decision Engine module based on the rules and context information already gathered. For this

reason, modules in the ICON Framework can be developed in such a way that they can be

customized to run on specific devices or network environments in order to take the best return

from the available resources. For example, on a device where more than one communication

interface exists, if the device goes below a configured threshold on the battery charge value, the

Decision Engine might opt to load a Network Engine that uses communication interfaces with

a lower power consumption, thus optimizing the battery consumption and avoiding a faster

battery exhaustion.

Regarding the message format and encoding it does not follow the implementations

found on CCN or Haggle. Instead of using a custom proprietary format, the ICON Framework

uses an open format known as Protocol Buffers [23]. The protocol produces small messages

and is fast to encode and decode data.

The FIB and PIT concepts present in the CCN node are essential concepts brought

from this project to the ICON Framework. These concepts are found on the Metadata Store

component, which is responsible to manage the forwarding information table and the pending

interest table of an ICON Node. On the CCN node model these two concepts along with the

content store are accessed via a common list where all these concepts are mixed and indexed,

but the ICON Framework provides direct indexed access to each one of these lists and avoids

the additional level that exists in the CCN node model.

The ICON Framework has the capacity to define multiple communication interfaces

per Node. Using such capacity, we can use the Decision Engine to select the best

communication interface, or even more than one if desired, to forward messages to the network.

This is beneficial, since data exchange will not be dependent on a specific communication

interface, which allow us to adjust the forward information table as the environment condition

changes. With the capacity to use the Decision Engine to adjust the forward information table

and the communication interfaces in use, the system is more capable to adapt himself to

opportunistic routing, where forwarding decisions are made using locally collected knowledge

about node behavior, to predict which nodes are likely to deliver a content or bring it closer to

the destination [24].

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 34

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The architecture design of the ICON Framework depicts tree main components that

together define the ICON Framework network Node:

 Decision Engine

 Network Engine

 Data Engine

Figure 7 - ICON Framework architecture design that defines the network Node

Each one of these engines have their own responsibilities and are designed to deal with

specific areas identified during the design of the ICON Framework architecture. The Node

Model and the Implementation sections of this document describe how each of these engines

are defined by components, illustrating the main responsibilities of each one. When compared

to the Haggle node, we can see a simplified node structure based on three engines only, versus

the larger set of managers present on a Haggle node. In Haggle, we can find managers for

protocol management at the same level that we see managers for connectivity management,

forwarding information management, data management or even node management. In contrast,

ICON makes a clear distinction between data management, network management, and decision

management, and defines three engines to handle such areas. ICON takes the principles of

modularity found in Haggle and readjust them to a more clear view of the Node, where each

engine can handle specific areas, which are then composed by components that are capable to

interact with each other to manipulate the Node behavior as a whole. The ICON Framework

also differs from Haggle by using dependency injection to load the engines or components, as

such, the ICON Framework is extensible and adjustable to scenarios where a customization of

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 35

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

some components or even a customization of a full engine might be preferred to address the

device or the environment where the ICON Node will be executed.

Altogether, the Decision Engine, the Network Engine and the Data Engine define the

kernel of an ICON Node. Applications will use this kernel to be able to communicate using the

ICON Framework network protocol in such a way that they do not need to worry about how

data is transmitted between nodes. In fact, they do not even need to worry about who is the host

of the data they ask for, or how it can be reached. With the routing configurations present in the

forward information table, which map Name prefixes to Communication Interfaces, and that

can be managed by the Decision Engine rule management component, the kernel earns the

capacity to deliver, route and receive data whenever applications need to communicate with

each other.

The ICON Framework imports other fundamental concepts from the CCNx

architecture, such as the Profile, the Name, Name Prefix or Prefix and the Faces. All these

concepts have their correspondent in the ICON Framework, which are:

 Profile – Naming rule, data format and ICON message semantics

 Name – Represents a hierarchical name on an ICON Interest or Content message

 Name Prefix or Prefix – Subset of a Name, where the right part of a Name can be

excluded. Ex: ‘ccn4d:images’ is a prefix of ‘ccn4d:images/image1.jpg/1’

 Communication Interface – generalization of the concept of a communication interface

3.2 Protocol

The protocol defines how messages are exchanged between ICON Nodes. The first

step is defining how the messages are formatted and encoded/decoded by the system, which is

described in the Message format and encoding section. These messages transport information

that must be identified, so the protocol defines the concept of a Name, which is used to identify

the content being requested on an Interest message, and also to identify the data on a Content

message, when the interest is being served. The protocol defines two types of messages which

are the only messages used to establish communications between Nodes, these are the Interest

message and the Content message. These messages flow on the network following a data

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 36

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

exchange pattern that starts when the receiver issues an Interest request to the network, and

ends when it receives the corresponding Content message to satisfy the Interest that was sent.

3.2.1 Message format and encoding

Like the CCNx protocol an ICON message does not have a fixed-length of fields. But

unlike the CCNx protocol where a custom binary format message was implemented, for the

ICON Framework the option was use a message encoder who has already proven to be effective,

efficient, reliable, extensible, easy to use and freely available, so the option was to use Protocol

Buffers [23] as the message encoder for all messages transmitted between ICON nodes.

Protocol Buffers is Google’s data interchange format and it is used by Google for

almost all of its internal RPC protocols and file formats [25], and there are several

implementations available for several languages and platforms.

As the ICON Framework target platform is Microsoft.NET, instead of implementing

the protocol inside the ICON Framework, the choice was to use a current implementation of

the protocol for the targeted environment. After looking for some of the current

implementations available the choice was for the Protocol Buffers implementation

implemented by Marc Gravell. Nevertheless, any other implementation could be used, as what

effectively matters is what goes on the wire when the messages are transmitted, so as long as

the protocol is correctly implemented, the choice behind any specific implementation is just a

matter of preference based on the library usage.

The choice for Marc Gravell implementation was mainly because its usage is

extremely easy and similar to the already know concepts present inside the Microsoft.NET

framework. Rather than being “a protocol buffers implementation that happens to be on .NET”,

it is a “.NET serializer that happens to use protocol buffers”, so the emphasis was to be familiar

to Microsoft.NET users [26]. By creating a .NET serializer that uses protocol buffers, the library

is consistent with the rest of .NET serializers and simplifies its usage. On the other hand, if a

new serialization process based on the protocol buffers definition would have been

implemented, its usage would be unnatural when compared the serialization mechanisms

provided by the .NET Framework.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 37

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

3.2.2 Content Identification

Inside the ICON Framework, Content is identified by its Name, no matter where it

came from or which machines were used during its transport.

A Name is a hierarchical structure of components of any length that once combined

identifies Content, part of Content or even a collection of data. A Name can be represented by

an Uri, where a scheme and a sequence of segments are all that it is needed to define a Name.

A Name can be divided in three main components:

 A scheme

 A list of components that identify a location and / or a concrete content

 An optional content segment number

Each one of this components are expressed by their UTF8 binary serialization

excluding any forward slash character “/” that might be present on any of its list of components

that are used in the Uri representation of a Name.

The following table illustrates Name examples using their Uri representation that point

to Content, a part of a Content or a collection of data:

Name Name Meaning

ccn4d:Images/Desert.jpg A Name that identifies the Desert.jpg Content on the Images

location using the ccn4d scheme.

ccn4d:Images/Desert.jpg/1 A Name that identifies the first segment of the Desert.jpg

Content on the Images location using the ccn4d scheme.

ccn4d:Images/ A Name that identifies any Content present on the Images

location using the ccn4d scheme.
Table 1 – ICON Framework Name examples

3.2.3 Message Types

As mentioned previously, the ICON Framework requires only two types of messages

to allow data interchange between its nodes, an Interest message and a Content message.

An Interest message is the message that a node sends to the network to manifest interest

for some Content. The interest is expressed by the Name present on the Interest message, so as

a Name can represent a specific Content, a chunk of it, or a collection of some data, when an

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 38

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

interest message is sent to the network the result that the node will get back will depend on the

Name that was expressed on the Interest that was sent.

As the name implies, Content messages are messages were the requested data,

expressed by an Interest message sent to the network, is transported back to the requester node.

Like the Interest message, a Content message contains the Name of the data it transports, but

extends it to contain the data in the form of a byte array, which carries the effective message

content.

The current definition of these messages includes just the minimum structures to allow

communication between ICON nodes. To further improve the protocol, other structures might

be required in both types of messages. For example, if we need to provide additional

information to allow an improved processing of Interest messages – filtering messages for

instance – the Interest type message needs to be extended to support such additional processing.

Another example of an area where the protocol might be extended relies on the protocol being

able to attest that all communications are secured and not violated during transport, to support

such scenario the Content message structure needs to be extended to support publisher

information and a signature of the data it contains. Such improvements, which can be found in

the CCNx protocol [27], can be added later on and extend the current message definitions.

3.2.4 Data exchange between nodes

Communications using the ICON Framework are controlled by the receiver. When

transmitting data between nodes it is the consumer that initiates a communication by sending

an Interest message to the network, the consumer also has the responsibility to retransmit the

Interests if it is still interested in the data that has not arrived yet.

The ICON Framework simplifies the responsibility to relay Interests. On its Network

Engine core there is functionality to automatically retransmit Interests during a configurable

period of time, and within randomly generated time intervals. Applications using the ICON

Framework only need to retransmit Interests if this period times-out, at which point the Network

Engine will no longer issue Interest messages. This is an improvement in relation to what is

implemented by the CCNx and Haggle projects, where such retransmission support does not

exist and must be assured directly by the applications using these projects.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 39

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Any node that receives an Interest, and has the capacity to deliver the Content

requested by the Interest, can send one Content message in response to a single Interest

message. There is only one Content message delivered per Interest messages received, even if

the node having the content can deliver more than one message for the requested Interest. Like

in the CCNx protocol, this one-for-one mapping between Interest and Data messages maintains

a flow balance that allows the receiver to control the rate at which data is transmitted from a

sender, and avoids consuming bandwidth by not sending data to nodes when it is not wanted

[27].

As such, when a consumer needs a set of data that requires multiple Content messages

it must issue at least the same number of Interests to the Network. To improve data transmission,

the consumer can send more than one Interest message in parallel even before receiving any

Content message. This can only be done if the consumer knows how to specify the Name of the

Contents that need to be asked to the network in the form of Interests. Once the messages are

received, the consumer will use the Name and the Data of the Content message to rebuild the

sets of data he asked for.

Sending in parallel multiple Interest requests to the network can be used in several

scenarios. As an example, let us think of an application that displays images that are stored

outside of the device where the application is running. Such application could issue in parallel

several Interests, each representing a single image request. Another option could be to issue in

parallel several Interests for different segments of an image, by specifying the segment number

on the Name of the Interest messages sent to the network. And a third option would be the

mixture of the two previous approaches, where the app could be asking for several images and

several segments per image in parallel and process the Contents received accordingly.

As long as the network bandwidth does not get exhausted, such type of communication

can greatly improve the data throughput between nodes. Such improvement in communications

is especially noticed when some of the nodes can start to deliver Content messages based on

data cached locally on their storage as a consequence of a previously similar Content message

arrival on such nodes. The graphics presented in the Testing the ICON Framework section

provide evidences of this result.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 40

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

3.3 Node Model

As mentioned previously,

modularity was always a key concept since

the early design of the ICON Framework

architecture. Therefore, inside the engines we

can find components that further divide the

responsibilities of each engine as illustrated

on Figure 8.

By having a kernel or Node that is composed by modular engines, it means that any of

these engines can be customized or even completely replaced for different devices or runtime

environments. The ICON Framework Implementation section, where details are given

regarding the implementation of the ICON Framework, has details on how such modularity was

supported and can be manipulated.

Besides the modularity found at the engines level, represented by the different

framework engines, each of these engines contain a set of components to further refine their

responsibility. This approach is similar with the architecture followed by the Haggle project,

where a set of managers are responsible for specific tasks [28], but instead of having a bigger

set of managers all interacting with a kernel, the ICON Framework kernel is in fact the

composition of these three engines.

Engines also need to communicate with each other to provide the functionality

expected by the content centric network node. Interactions between node engines are done in

process using the ICON Framework API that provides access to properties, methods and

functions on each of the components it defines. As every engine has access to the Node, and

the Node has access to every engine, communication can be done from any engine to every

engine.

3.3.1 Decision Engine

The Decision Engine component is meant to be the component responsible to take the

major decisions that a Node needs to make. When compared to the CCNx protocol, the Decision

Figure 8 - ICON Framework architecture design

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 41

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Engine plays a similar role as the Strategy Layer, but where extended functionalities can be

found. The Decision Engine also includes behaviors that can be found in the Haggle Resource

Manager. Here, the Context Collector can be used to collect information about the device, like

power battery, available storage, bandwidth, etc., and then define rules using the Rule

Management to change the behavior of the node and ensure that the resources are used

appropriately and in an efficient way.

An implementation of the Decision Engine was out of scope of the current dissertation,

in fact, as the Decision Engine plays an important role in the ICON Framework Node Model,

this work is being further investigated in the SITILabs research center. In any case, the Decision

Engine component should be able to:

 Manage rules to route / forward network messages

 Take decisions upon human behavior interactions

 Collect contextual information

 Synchronize data

By gathering and analyzing the data that flows on the Node, combined with the

contextual information collected from the device where the system is running including the

human interactivity, gives enough data to allow the Decision Engine to be capable to interact

with the Network Engine to enable or disable communication interfaces, manipulate the

forwarding information table and adjust the Node to better serve and receive data. Also, the

Content Store control in the Data Engine, where the local cache is persisted and manipulated,

can be controlled using synchronization policies defined in the Decision Engine to ensure a

good usage of the local cache. For instance, a synchronization policy might determine that if

the node could not store all Content messages of some data, then no Content messages should

be stored for that data, and the Node storage should release all data already persisted for this

content to provide more space to other contents. Another option would be to define least-

recently-used or least-frequently-used policies to manage the local store.

The Decision Engine should be seen as the brain of the Node that is capable to control

its communications via the Network Engine or the way it handles the data using the Data

Engine.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 42

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

3.3.2 Data Engine

The Data Engine responsibility is to handle the Node data. Not only this engine handles

data related to the Content objects it receives and processes, using its Content Store Control,

but it is also be responsible to manage two of the most important data sets of the ICON

Framework architecture, the Forwarding Information Base or simply FIB using the FIB

Manager, and the Pending Interest Table or simply PIT using the PIT Manager. It is also

responsible to segment data for Contents who need to be divided or joined, and it uses the

Sequencing component to handle such work. Finally, the Security and Privacy component is

where data should be encrypted and/or signed to ensure the security and privacy of the data

handle by the node.

3.3.2.1 Content Store Control

The Content Store Control responsibility is to manage all the Content messages that

can be stored in a Node. Content messages are stored and indexed by their Name to speed up

data retrieval when needed. A simple implementation of a Content Store Manager can be based

on a memory dictionary to store Content messages indexed by their Name.

The policies to manage the persistence of data segments in the content store should be

defined by the Decision Engine. This provides the capacity to have different behaviors based

on the device, or even due to environment conditions that lead to changes in the data storage

policies. The Handle Content Messages section where the pipeline to process Content messages

is described, has a reference to the where the Decision Engine participation is made. Cache hit

and misses are described in the Handle Interest Messages section. Essentially a cache hit will

immediately return a Content message from the cache, while a cache miss will force the

execution pipeline of the Interest message to proceed.

3.3.2.2 Metadata Store Control

The Metadata Store Control is composed by the PIT Manager and the FIB Manager,

which are the repository of the pending interest requests and the forwarding information base

tables of the Node.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 43

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

3.3.2.2.1 PIT Manager – Pending Interest Table Manager

The PIT is essentially a dictionary of Names for the Interest requests who arrived at

the Node. For each Name entry in the PIT there is the list of Communication Interfaces who

ask for it, and to where the Content message once received or produced, should be sent to.

On the ICON Framework, the PIT Manager is responsible to manage this table. To do

it, the PIT Manager needs to be able to interact and query the status of the PIT entries it

manages. As such, the following operations must be executed by the PIT Manager:

 Add pending Interests – To add Interests and the Communication Interface to reply to,

when the Interest arrives at the Node and it waits to be satisfied

 Remove pending Interests – To remove Interests when they are satisfied, or when the

time available to satisfy them expires

 Get Communication Interfaces for pending Interest – List of Communication Interfaces

who are waiting for the Interest to be satisfied

A simplified view of the PIT is shown below:

Interest Name Expires Communication Interfaces

ccn4d:Images/Desert.jpg/1 2012-12-23 19:00:04.23498273 Communication Interface 1

Communication Interface 2

ccn4d:Images/Desert.jpg/2 2012-12-23 19:00:04.33498273 Communication Interface 1

ccn4d:Images/Desert.jpg/3 2012-12-23 19:00:04.43498273 Communication Interface 2

ccn4d:Images/Cat.jpg/10 2012-12-23 19:00:06.23498273 Communication Interface 1

Communication Interface 2

Communication Interface 3

ccn4d:Images/Cat.jpg/11 2012-12-23 19:00:06.33498273 Communication Interface 2

Communication Interface 3
Table 2 – Simplified view of the PIT

3.3.2.2.2 FIB Manager – Forwarding Information Base Manager

The FIB is where a Node stores information regarding how it forwards Interests to

other Nodes in order to receive the respective Content messages. Typically, FIB entries are

defined in application settings and configured upon application startup, but the ICON

Framework API also supports dynamic manipulation of the FIB, allowing applications to adjust

or completely reconfigure the FIB. The Decision Engine can also manipulate the FIB by using

a set of rules or in reaction to environment changes on the Node.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 44

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The FIB Manager role is to provide access to FIB table manipulation and support the

following actions:

 Register routes to Communication Interfaces based on a Name – it can be a full Name,

including the segment number, or just a Name Prefix

 Un-register route to a Communication Interface

 Get the Communication Interfaces for the given a Name

 Get the full list of registered routes given by Name and respective Communication

Interfaces

3.3.2.3 Security and Privacy

Security and privacy are becoming increasingly important with regard to the transfer

of data between network devices. Securing messages at the application level increases the

security level when compared to the security level of current IP communications, which is

mostly based in TLS/SSL and is done at the session level of the OSI network stack, which stays

on top of the transport layer.

Applications using the ICON Framework have the capacity to secure their messages

as data is added to Content messages. They should start by using an asymmetric key to send a

symmetric key to be used later on for the data transmission. This provides an increased level of

security, as applications will be able to encrypt the data segments that travel inside the Content

messages. This is not a problem for the protocol since the protocol is completely agnostic to the

data it carries, and it has no need to look at this information to read or change it. Due to the

modularity of the ICON Framework, applications will be able to control if data encryption

and/or signing is needed, by using or not the Security component.

An important point to mention is that all data stored locally on a Node has no

information of their origin or destination, due to the fact that the data packets do not contain

any kind of information that could identify the source or the destination of the data. This is

achieved just because the protocol to transfer data is based on content centric networks where

no host information relies on the data packets transferred between the network devices where

the data flows, so even if the data is not secured, the data transfer protocol provides already

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 45

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

some degree of security and privacy due to its intrinsic nature of forwarding data through the

network which does not identity the consumer and the producer of the data being transferred.

3.3.2.4 Sequencing

The Data Engine through its Sequencing component is also able to create Content

message data segments, join and write them whenever needed. This is necessary whenever the

node needs to transfer, or store data locally, that do not fit in the network packet size. The

Sequencing component is also used to rebuild data from Content messages when data is

received from several Content messages as a result of the data segmentation that was done when

the data was produced.

The ICON Framework handles all the effort related to data segmentation on Content

messages so that consumers of this framework do not need to have the burden of handling with

such processing.

3.3.3 Network Engine

All network communications between distinct Nodes are done via the Network Engine.

This means that nothing is sent or received from other Nodes without being processed by this

component.

To provide such communication capabilities, the Network Engine allows

communication interfaces to be registered within the interface communication manager

reference exposed by the engine.

The communication interface manager will use the registered set of communication

interfaces to send and receive Interest and Content messages.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 46

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The communication interface manager has a nuclear role in the Network Engine,

besides providing support for interface communication registration, through him any Node is

able to:

 Issue requests to the network – send Interest messages

 Handle and process all incoming messages

o Interest messages

o Content messages

3.3.3.1 Handle Interest Messages

When an Interest Message is received, the Network Engine, via its communication

interface manager, will process the message as follows:

 Makes a Content search on the local store. If Content is found that satisfies the incoming

Interest a Content message is returned containing the Content object found on the local

store. If not, proceed to the next step.

 Check if the node’s Data Engine is a content generator – typically only if it is a network

leaf node. If it is, try to generate the Content, if succeeded, segment and store its

segments in the local store to satisfy further Interests. Take the first segment of the

Content produced and send a Content Message in response. If not, proceed to the next

step.

 Do a lookup on the Pending Interest Table of the Data Engine for a matching pending

Interest. If a pending Interest is found, add the Communication Interface to where the

response should be sent to the list of Communication Interfaces of the PIT. If not,

proceed to the next step.

 Do a lookup on the Forwarding Information Base of the Data Engine to see if the interest

can be forward to another node. If the Interest can be forward, add a PIT entry containing

the pending Interest and the Communication Interface where the response should be

sent. If not, proceed to the next step.

 Ignore the Interest message as the node cannot process it.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 47

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure 9 shows how the Interest message is handled by the ICON Node.

Interest
message

Is Name on
local store?

Yes Get local content
Send Content

message

No

Can generate
content?

Yes
Content
created?

Yes

Store content
segments locally

Send 1st Content
message Segment

Has PIT entry?

No

Has FIB match?

No

No
Cannot
resolve

Yes Add CI to PIT entry
Content message
will be returned
when received

or
PIT entry expires

Yes Create a PIT entry

Figure 9 - Handle Interest message

3.3.3.2 Handle Content Messages

When a Content Message is received, the Network Engine via its communication

interface manager will process the message as follows:

 Do a lookup on the Pending Interest Table of the Data Engine for an Interest whose

Name matches the Content Name. If a matching PIT entry was found, remove it from

the PIT, get all the Communication Interfaces registered with it, and send the Content

Message to each one. Ask the Data Engine if the Content can be stored locally, use the

content store manager to store the Content object if a positive response was received. If

the PIT lookup was not successful, proceed to the next step.

 Ignore the Content message as the node was not waiting for it, and unsolicited Content

messages must be ignored.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 48

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure 10 shows how the Content message is handled by the ICON Node.

Content
message

PIT entry exists?

Yes

Get the CI s of the
PIT entry and send

Content message to
them

End

Can store
Content
locally?

Yes
Store Content

Locally

No

No

Remove PIT Entry

Figure 10 - Handle Content message

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 49

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

4 ICON Framework Implementation and Usage

The ICON Framework was developed using Microsoft Visual Studio 2010 and

Microsoft Visual Studio 2012. The source code was written in Microsoft C# against the

Microsoft.NET Framework 4.0 version ensuring Mono compatibility.

Early in the implementation phase, series of experiences were conducted to evaluate

the capacity to produce code which could be executed on all of the proposed platforms:

 Windows using the Microsoft.NET Framework

 Linux using Mono

 Mac OS using Mono

 Android using Monodroid

 Windows Phone using the Microsoft.NET Framework

 iOS using MonoTouch

 Embedded platforms using Microsoft.NET Micro Framework

The experiences consisted in trying to create small code blocks that could prove the

capacity of the platforms to use generics [29] [30], dependency injection [31], multithreaded

support and sockets programming. The test results showed the need to reevaluate the target

platforms for the prototype because some of the platforms did not provide the required

functionality to allow the development of a solution on those targets. The Windows Phone

operating system available at the time did not provide support for sockets, and this was a

requirement since the Communication Interfaces implemented on the prototype were based on

sockets using the UDP protocol. Microsoft.NET Micro Framework also has a lot of cuts when

compared with the full Microsoft.NET Framework, for instance support for generics is missing,

which would increase substantially the development time required to support dependency

injection and as a consequence, modularity. As such, both of these platforms were excluded

from the target platforms of the ICON Framework for the current prototype implementation.

Android and iOS with Mono for Android and MonoTouch were also evaluated, but due to lack

of equipment to run on those platforms – using emulators was not an alternative – the final

solution was not tested against them, although the source code is compiled successfully against

the Mono for Android platform. Despite the fact that the solution was not tested on those

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 50

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

platforms, the importance of being able to compile the source code against the Mono for

Android means that there should be no problem to have the ICON Framework running on this

platform.

4.1 Implementation

The prototype implementation of the ICON Framework built a full network Node, but

with a subset of the full framework. For the prototype some shortcuts where made, most

noticeable, the Decision Engine was implemented just to provide a basic support for the

prototype usage, where the components that define its behavior where not implemented, or

where just implemented to provide a basic functionality to support the prototype. On the Data

Engine, the Security and Privacy component was not implemented also because it was not a

fundamental component to demonstrate how the ICON Framework could be implemented and

it is a component that can be added has the framework implementation evolves. Figure 11 shows

the engines and components implemented, and the messages switched by the Nodes.

Figure 11 - ICON Framework prototype implementation

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 51

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

4.1.1 Decision Engine

As the Decision Engine components were not fully implemented, a basic Decision

Engine was created just to provide a set of basic functionality to support the current

implementation. As an example, there is the necessity to know if a Content message should be

stored locally or not, to answer this, the implemented Decision Engine provides a function that

allows all Content messages to be stored locally. Another example is the selection of

Communication Interfaces of the Node to be used in communications, which, for the current

implementation, will always use the first Communication Interface available.

4.1.2 Network Engine

The prototype delivered with this dissertation has implemented a fully functional

Network Engine with a Communication Interface control manager that allows: registration and

un-registration of Communication Interfaces; get the list of registered Communication

Interfaces; and has the capacity to send interest requests to the network using the registered

Communication Interfaces. The C# interface declaration that supports this functionality is

presented on Figure 12.

Figure 12 - C# interface definition of the Communication Interface control manager

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 52

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The implemented Network Engine also controls network communications, where

Interest and Content massages are sent and received. A detailed description on how these

messages are processed was described previously on sections Handle Interest Messages and

Handle Content Messages, where Figure 9 and Figure 10 were also presented showing the

respective flowcharts.

The ICON Framework automatically resends Interest messages that are on the PIT

waiting for the corresponding Content message to arrive. To support this, there is a permanent

loop running on a worker thread of the Node process that is responsible to query the PIT for

interests older that a configurable threshold. For the entries found, the network control will

resend the Interest message to the network, removing such effort from the applications that use

the ICON Framework. Figure 13 shows the code excerpt where the worker process is declared,

and where we can see the Data Engine being used by asking the Pending Interest Table for the

pending interests older than a certain amount of time, which can be configured at the application

level.

Figure 13 - Worker thread to resend Interest messages

Routing and forwarding control is handled by the Network Engine using the Routing

and Forwarding component. Here the FIB table, that exists on the Metadata Store control of the

Data Engine, can be managed to: allow new routes to be registered given a Name and a pair of

Communication Interfaces that define the source and destination of communications; unregister

routes given the same set of information; get the route definition for a Name; and get a

dictionary with a list of Names and routes defined for each one. In the current implementation,

the FIB table was configured using a XML document where, along with the set of available

interfaces, we can find the forwarding information between Names and Communication

Interfaces. As already mentioned, future developments, where a Decision Engine has more

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 53

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

functionality than the provided, can avoid this manual configuration, as the Decision Engine

will be able to define the information configured on this file. Figure 14 presents an example of

a configuration file that can be used to configure the FIB using the API described in Figure 15.

On Figure 14, three Communication

Interfaces are defined, the first one is the

listener where Interest and Content messages

are received, and the other two are

Communication Interfaces to other Nodes that

are configured to be listening on the values

provided in this configuration file. Forwarding

information is also set, where we can see that

all Interests with a Name ‘Images/Desert.jpg’

received on the first Communication Interface will be forwarded to the third Communication

Interface, while all Interests with a Name Prefix ‘Images’ received on the first Communication

Interface will be forward to the second one.

Figure 15 - C# interface definition of the FIB manager

Figure 14 - Configuration file to configure

Communication Interfaces and the FIB table

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 54

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

4.1.3 Data Engine

In terms of the Data Engine, all the major components where implemented except the

Security and Privacy. Although most components where implemented, other might be added in

the future as alternatives to the current ones. For instance, the Content Store control component

that was implemented uses in memory storage that served the purpose of the prototype, but a

new implementation that stores data on a solid state drive should be needed if a lot of data is to

be stored on the Node. As the ICON Framework is modular, having more than one

implementation of these components is good, because at the end, each application that is using

the framework can choose the one to use, or, have rules defined on the Decision Engine to

switch between components if that is the most appropriate option. Figure 16 shows the API

used by the Content Store control component to manage the local store.

Figure 16 - C# interface definition of the Content Store component manager

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 55

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The Data Engine, via the Metadata Store control component, is where the tables for

storing pending Interests and forwarding information base are defined. Details on the FIB table

manipulation where described on the previous section, during the configuration of

Communication Interfaces and the management of the routing and forwarding information

table. So, on this section we will address the management of the PIT, which is the other

component of the Metadata Store control component.

Figure 17 - C# interface definition of the PIT manager

Figure 17 shows the definition of the C# interface of the PIT manager. Here we can

see methods to add, get, remove and check existence of Interests on the pending interest table.

We can also see the function ‘GetPendingInterestCommunicationInterfaces’ which provides a

list of Communication Interfaces of a PIT entry, and optionally removes them from the PIT. As

seen in the Handle Content Messages section, in particular by reading the flowchart presented

on Figure 10, if a PIT entry is found, the system will need to remove it to avoid other Content

messages received for the same Interest to be processed, so this function atomically queries the

PIT and optionally removes the entry if one is found, which simplifies concurrent read and

write access to the PIT. Note that multiple Content messages for the same Interest can arrive to

the Node, if for any reason more requests were sent for the same Interest before the

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 56

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

corresponding Content message has arrived. These multiple Interests requests for the same

Interest can be done by the application using the ICON Framework, or more naturally, by the

framework itself during the execution of the worker process that is constantly monitoring the

PIT to resend Interests that were not satisfied in a timely manner, as specified by the application.

The definition of this worker process, responsible for monitoring the PIT to resend Interest

requests to the network if these are not satisfied in the expected interval, was presented in the

previous section and its implementation was showed in Figure 13. Besides this worker process,

there is another worker process that is responsible to remove from the PIT all Interests that were

not satisfied at all, which means Interest requests that have expired even after the Node has

made efforts to resend them. Figure 18 shows the implementation of this worker process, where

we can see that the PIT is filtered to get all PIT entries for which the ‘ExpiresAt’ value is lower

or equal to the current time. All the entries found will be removed. If the application still needs

the Content messages for these Interests, it is then its responsibility to issue the Interest requests

again.

Figure 18 - Remove expired PIT entries worker process

The last component of the Data Engine that was required and implemented on the

prototype was the Sequencing component. This component has two responsibilities:

 Given a content producer function, create Content messages that can be transmitted on

the network, ensuring that the serialization size of the produced messages is guaranteed

to be lower or equal to the network packed size defined by the application. A content

producer function is a function that can generate content, for instance a function that

reads a file from disk and expose the file content as a byte array, can be a content

producer function;

 Given a set of Content messages, write their data to a stream from where data can be

read and processed.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 57

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure 19 shows the C# interface definition of the Sequencing component. The

‘CreateSegment’ and ‘WriteContents’ functions provide the responsibilities of the component.

On the ‘CreateSegment’, the third argument is a pointer to a function that will get the

Name extracted from the Interest provided on the first parameter, and an integer that represents

the maximum data length in bytes for the data block of the Content message that is to be

produced. This function should then produce a byte array containing the data for the Content

message, where the length of the byte array might not exceed the size of the second parameter

passed to the pointer function. The length of the byte array is determined based on the size of

the Name and the network packet length, so the longer the Name the lower the size of the data

block of the Content message.

The ‘WriteContents’ does the reverse operation, but from a set of Content messages.

The set of Content messages must be provided with the right ordering sequence. Otherwise the

stream will get unordered data, which would not produce the desired result. It is the application

responsibility to provide the right order, because it is the application that has defined a Profile

to transmit data, and as such, it is the application that knows how to order Content messages

correctly. On this point, further work can be developed to try to use the segment number that a

Name might have, and use this number to sort the Content messages if they are not sorted at the

application level. This introduces more complexity, as there are scenarios where not all content

messages can be received and sorted, before the application needs to start to process them. Live

video streaming is one of those examples.

Figure 19 - C# interface definition of the Segmenting component

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 58

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

4.2 Source code and the project structure

The Figure 20 shows the source code of the C#

project structure of the ICON Framework. In the project

structure we can identify three major areas:

 Dependency Injection – Contains code used to

register and resolve network modules

 Network – Defines the Node and includes the

default Data Engine, Decision Engine and Network

Engine modules. If needed, these can be replaced

with custom assemblies to allow customizations

 Protocol – Where the types required to support the

protocol are defined

4.2.1 Dependency Injection

In the web article Inversion of Control Containers and the Dependency Injection

pattern [31], the author describes how the Dependency Injection works pointing out some of

the advantages and disadvantages of it usage. To summarize the dependency injection pattern

in a phrase, we can say it provides a way to inject dependencies on running code just by having

the required types registered against contracts. The reason to use this pattern was to provide

support for modularity in the ICON Framework.

In fact, there are lots of implementations of the pattern for the Microsoft.NET

Framework, some more complex than others. The dependency injection requirements for the

ICON Framework were quite simple but it is needed to run on the target platforms mentioned

previously, so the choice was to look up for an implementation of a dependency injection

solution that could be used across the platforms for which the ICON Framework is being

targeted. The source code should also be available to allow any customization, if needed.

The choice was to use the TinyIoC source code, more specifically, the version that was

available on March 13, 2012 at https://github.com/grumpydev/TinyIoC. TinyIoC is an

Inversion of Control container and provides basic Dependency Injection capabilities.

Figure 20 - ICON Framework project

structure

https://github.com/grumpydev/TinyIoC

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 59

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The type registrations of the Node Modules are all done using the TinyIoC, which

brought the capacity to register and dynamically load types. TinyIoC is also used internally to

automatically register assembly types and inject them when required.

Consumers of the ICON Framework can use the application settings to configure the

module types to be loaded, being the module types provided with the framework the default

ones. Below is an example of registering the modules types in the application configuration

file:

Figure 21 - Registering Module types

Here we can see that the types being registered are also from the ICON Framework,

but others could have been specified to support specific functionalities if needed. This provides

a great level of customization at a very low level, since consumers of the framework can replace

specific parts in order to meet their needs. For instance, different platforms or even client

applications will probably prefer to redesign the Decision Engine provided – since the provided

implementation has just basic set of functionality. This can be done without the need to change

the current implementation and just by registering a Decision Engine module from a different

assembly. The same option is valid for the other two engines.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 60

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

4.2.2 Protocol

In the Protocol we can find the definition of the types required for the ICON

Framework network protocol. These types are also the types who will be serialized by the

protocol-buffers serializer and consequently transferred on the wire whenever Interest and

Content messages are sent over the network. The defined types are:

 Name – This class defines a Name to be used in an Interest or Content message and is

used to identify the information being requested or sent.

 MessageBase – This is the base class for all the messages that are transferred by the

protocol: Interest and Content

 Interest – Interests represent the information being requested over the network

 Content – Content objects are those who transport the information over the network

The following diagram is detailed view for each of types mentioned above:

Figure 22 - Detailed view of the types defined under Protocol

4.2.3 Network

The Node type definition and the default engines – DataEngine, NetworkEngine, and

DecisionEngine – are all defined under Network as showed in the project structure on Figure

20.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 61

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The Node type is what represents the kernel or Node in the ICON Framework, and as

such, it is the main component used by applications to communicate with each other using the

ICON Framework protocol. The Current static property of the Node type contains an instance

of it, and is the preferred way for applications to gain access to a Node. From here, applications

using the framework can have access to the engines using the DataEngine, DecisionEngine and

NetworkEngine properties. The types for each of these engines are resolved by dependency

injection using the registration process described in Figure 21. So, to have an ICON node

operational, applications using the ICON framework just need to access the Current static

property of the Node type to automatically initialize the ICON Framework. The initialization

process will use dependency injection to resolve the required types and instantiate the

DataEngine, DecisionEngine and NetworkEngine properties.

To get information from an ICON Node regarding its pending interests, its forwarding

information table, or the data it has stored locally, the Node initialization process creates and

listens on an http endpoint that can be used to get all this information. The choice for an http

endpoint was just to simplify these readings, and use a simple web browser to get this data from

the Node. Samples of the information provided by this endpoint are provided in a following

section.

The source code of the prototype contains implementations for the three engines,

however the provided implementation of the Decision Engine does not include a full

implementation of the components described in the ICON Framework definition. This means

that the current prototype does not define the Rule Management, the Human Behavior Interface,

the Context Collector nor the Synchronization components, which means, that for the current

prototype the Decision Engine implementation only defines a basic module that does not take

into account all these components. As such, the current implementation simply selects the first

available communication interface to transmit data, and stores locally all data that it receives.

This is not an issue or impediment to use the current prototype, because as we are using

dependency injection to resolve types at runtime, consumers of this prototype can define their

own Decision Engine implementation and use the registration process described in Figure 21

to replace the current implementation, taking advantage of the simplicity provided by the ICON

Framework design to replace modules as needed. The Network Engine has been fully

implemented using an UDP Communication Interfaces that support communications using

UDP protocol as the transport layer. Other protocols could have been chosen, TCP for instance,

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 62

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

but the reliability provided by the TCP protocol was not needed and the lower overhead and

reduced latency provided by UDP was preferred. The UDP protocol is fast, simple to use, and

provides all the requirements needed by the ICON Framework to exchange data. To support

this, an UDP Communication Interface was implemented and tested to ensure the best possible

results. Nevertheless, other Communication Interfaces could have been implemented to support

other transport protocols, for instance a Bluetooth Communication Interface. The Data Engine

provides access to the implementations of the PIT Manager and the FIB Manager, both forming

the Metadata Store control, and to the Content Store Manager and the Sequencing components.

The figure below provides more details for each of the classes and interfaces defined under

Network.

Figure 23 - Interfaces and Classes defined under Network

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 63

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

As we can see from the previous image, every class, except the Node class, implements

an interface. By defining interfaces for each module and their respective components, we are

abstracting each one of these concepts behind the interface, which means we can have different

class implementations for the same interface, with different behaviors in it, and choose the best

implementation for each application that uses the ICON Framework. This supports abstraction

and modularity, which was always a top priority in the implementation of the ICON

Framework. The abstraction simplifies the modularity concepts behind the framework, because

we can replace some, or even all, of the ICON Framework provided modules on a specific Node

just by doing the registration configuration process like the one showed on Figure 21. For

example, if we need to register a different Decision Engine for a specific Node, all we need is

to provide a custom implementation of this engine, using the provided interface declared on the

ICON Framework, and then register this engine implementation in the application configuration

file, again, using the configuration process described in Figure 21. By doing this, and because

we are using dependency injection, when the Node starts it will use the custom engine

implementation instead of using the one provided by the framework. The current prototype

implementation requires a Node reboot if we need to change any of its engines, future

implementations can monitor changes on the configuration file and re-inject the modified

engines to avoid the reboot. This gives a great level of flexibility in terms of modularity for

applications that use the ICON Framework.

4.3 Using the ICON Framework

The first step to use the ICON Framework on an application developed with Microsoft

Visual Studio 2010, 2012 or with MonoDevelop, is to add a reference to the assembly of the

ICON Framework. A reference is a link between the application and the ICON Framework

compiled code. The assembly, is the file containing the Intermediate Language compiled code

were the ICON Framework declares all of its types to define their engines and components. An

assembly was generated when the ICON Framework prototype was compiled from the C#

source code file to the Intermediate Language. The sources and the compiled assemblies of the

framework, along with all the applications built to test the prototype are also provided with this

dissertation.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 64

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The second step, more conceptual, depends on what kind of app is being developed.

The framework is ready to be used under three different scenarios, or a mixture of them:

 Producer – Node is primarily a Content producer

 Router – Node does not produce any Content and its main responsibility is to forward

Interest and Content messages between other Nodes

 Consumer – Node is primarily a Content consumer

Any of the above combinations are valid. In fact a Node can have the three roles

mentioned previously, so it can be a Content producer, a message forwarder, and a Content

consumer. For instance, consuming the ICON Framework on an opportunistic network scenario

is a great example of such a Node type. In such environment the app might use the available

Communication Interfaces to communicate with other Nodes, produce and consume data, and

at the same time be a vehicle for other Nodes to interact with each other.

Once the scope of the app is defined, different actions need to be taken to be able to

interact with the framework. The simplest case is the one where the app is just a passive Node

on the network, which means it will not request directly for Interests nor produce Contents, it

is merely a forwarder of those messages. In this case all it needs to be done is to configure the

Communication Interfaces and define how to

forward messages to other Nodes based on the

Interest Names it can forward. Figure 24 displays

an example of such configuration. This

configuration was required on the prototype

implementation, because the Decision Engine

module that was created with the prototype did not implement the required components to

determine this information, components like the rule management and the context collector

should be able to get this information automatically and without recurring to this configuration

file. Having done this, the app just needs to access the static Node.Current property to bootstrap

the Node’s initialization process, and the ICON framework does all the rest.

To be a Content producer, a Node just has to initialize the ContentGenerator property

of the DataEngine property, which is accessible through the Current static property of the Node

instance. Another option is to store Contents directly in the Node’s local store. Below is an

Figure 24 - Sample of Communication Interfaces

Node configuration

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 65

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

example on how to initialize the ContentGenerator property of the DataEngine on a Node

instance, to allow it to send the content of the files identified by the received Interests.

Figure 25 - Sample code to have a Node as a Content producer

Finally, to consume Content by issuing Interests to the network, the app will use the

Request method available on the CommunicationInterfaceManager of the NetworkEngine via

the Current static property of the Node type. This method requires the Interest, a timeout and a

handler to process the Content message when received.

Figure 26 - Sample code to have a Node as a Content consumer

In short, if a Node consumes or generates data, by requesting Interests to the network

or by producing Content messages for the received Interests, if it forwards Interests and Content

messages also, all it has to do is add a reference to the ICON Framework and reproduce steps

similar to those described above. By doing it, it will be ready to use a content centric based

protocol which abstracts completely the notion of hosts and the lower level transport protocols;

while at the same time it will gain an efficient communication layer even on disruptive

environments where network stability between hosts is not always granted. In fact, every

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 66

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

application will benefit from the inherited capacity of the ICON Framework to store locally

Content messages once they are received, avoiding the need to transfer data directly from the

producers every time the same information is requested by several Nodes. This will also

increase the data throughput as demonstrated by the measures taken on some of the realized

tests.

4.4 Node information available at runtime

Getting data about the data structures stored on an ICON Node can provide

information about the current Node behavior. To provide such information the prototype

implementation has added support to get such data using simple HTTP Get commands, so every

Node has an HTTP listener, which by default will listen on the local host on port 7999, unless

otherwise specified in the application configuration file using the HttpListenerPrefix setting.

As an alternative to the HTTP listener an application can use the ICON Framework network

protocol using a specific Profile to retrieve the same type of information. The result would be

similar, except that the client interface would be a custom application instead of a simple web

browser. Once an HTTP Get command is issued, the Node will respond with an HTML

response containing information about the Node. The Node provides three types of information:

 General Node information – available on the root address of the configured Http prefix

o Registered Communication Interfaces where the Node is listening for Interests

o Registered routes – reflects the content of the FIB Table

o Pending Interests – reflects the content of the PIT Table

o Number of Content messages stored locally and the size they are taking

 PIT contents – available on the PITDetailed address of the configured Http prefix

 Locally stored contents – available on the LocalStoreDetails address of the configured

Http prefix

Any HTTP client can be used to get information about a Node. Any browser can be

used to issue the HTTP requests on the Node’s configured HTTP listener prefix. The following

figures provide samples of the information that can be retrieved when the HTTP Get commands

are issued on the configured HTTP port of the Node.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 67

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure 27 - HTTP response sample containing general Node information

Figure 28 - HTTP response sample containing detailed PIT information

Figure 29 - HTTP response sample containing locally stored Content details

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 68

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5 Testing the ICON Framework

The ICON Framework was designed and implemented to be able to run under multiple

platforms and environments and with the capacity to exchange data between them without

requiring changes the source or compiled code. As a result, once the source code is compiled

and the MSIL – Microsoft Intermediate Language, code is produced as the output of the

compilation, it can be used to be executed on the following platforms:

 Any system with Microsoft.NET Framework 4.0 or greater installed

 Any system with Mono 2.10 or greater installed

 Any Android system with Mono for Android installed

During the development phase, most of the code was implemented and executed on a

system running Microsoft Windows 7 operating system and with the Microsoft.NET

Framework 4.0 as the target platform. This approach was excellent to provide quick results,

useful on the initial implementation stage, but as as the development stage was evolving there

was the need to start targeting and testing the ICON Framework under different platforms and

environments, so the system was tested on the following systems:

 Windows 8 using Microsoft.NET 4.5

 Windows 7 using Microsoft.NET 4.0

 Ubuntu 11.04 using Mono 2.10

 Mac OS X 10.6 Snow Leopard using Mono 2.10

5.1 Test configuration

Unfortunately, testing the ICON Framework on an Android system was not possible,

but, all the source code of the ICON Framework compiles successfully against the Mono for

Android platform, which means, at least in theory, that Android systems with this platform

installed should be able to use the ICON Framework and interact with other systems running

the ICON Framework too.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 69

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The network configuration used to test the

system consists of four systems, running on different

environments and platforms. Due to some resource

constraints, one of the systems was based on a virtual

machine hosted in one of the other configured

environments.

Figure 30 presents the network configuration for all the nodes configured to test the

solution. Node C communicates with the network through Node D, using the virtual machine

network configuration NAT – Network Address Translation – option. Further details with each

Node characteristics are presented on Table 3 below.

Node Characteristics

Node A Windows 8 Pro (x64)

Intel Pentium Dual-Core CPU T4300 @ 2.1 GHz

4 GB RAM

100 Mbps network card

Microsoft.NET Framework 4.5

Runs the Consumer application (will issue interest requests to the network)

Consumer’ is a second instance of the Consumer application running on Node A

Node B Ubuntu 11.04 (natty) – Kernel Linux 2.6.38-15-generic

Intel Pentium M processor 1600MHz

520 MB RAM

100 Mbps network card

Mono 2.10

Runs the Router application (acts as router between Nodes A, C and D)

Node C Mac OS X 10.6 Snow Leopard - running on a virtual machine hosted by Node D

4 virtual processor cores (2 processors with 2 cores each)

2 GB RAM

100 Mbps network card

Mono 2.10

Runs the Producer application (acts as a content provider on the network)

Node D Windows 7 Professional(x64) - hosts Mac OS X virtual machine running Node C

Intel Core i7 CPU M640 @ 2.8 GHz

8 GB RAM

100 Mbps network card

Microsoft.NET Framework 4.0

Runs the Consumer application (will issue interest requests to the network)
Table 3 – Nodes configuration for running tests

Network Node A

(Windows 8)

Network Node B

(Ubuntu 11.04)

Network Nodes C & D
(Mac OS X – virtual machine)

(Windows 7)

100 Mbps Switch

Figure 30 - Network Nodes setup

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 70

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.2 Test description

Three types of applications, using the ICON Framework to transfer information

between them, were developed and installed in all the network nodes described previously.

The purpose was to test the ICON Framework while transferring data between two or

more network nodes. To achieve that, three different apps were developed, with each one

consuming the ICON Framework to establish the required communications to transfer data

between each other. The first piece of software acts as a content provider, as such, it should be

capable to provide content to the requests sent to the network whenever they reach the Node,

and the Node has the capacity to produce the content for the requested data. A second type of

application should be able to act as a router and transfer data between Nodes just by looking to

the interests it receives and using the Node communication interfaces with the forwarding

information that was configured. The third and final element required for the test was the

application that could send Interests to the network, wait for their Content, and do something

with it.

All these pieces of software were built to test the functionality of the ICON

Framework, so three applications were built to represent each of the targeted scenarios:

 Consumer – is an application that uses the ICON Framework to issue Interests to the

network. Each content message that it receives from the ICON Framework, upon

sending an Interest, is stored in memory until all the Content messages are received.

Once the last message is received the cached Contents are flushed to disk, making the

content available to be consumed by the operating system or other apps. During the

tests, this application was executed on the Network Node A with one or two instances,

the latter being referred as Consumer’. A second instance was added to have another

Consumer app running for some tests where the same set of interests were issued but,

with some delta. In this scenario, the expected result was to have faster Content

messages on the instance that was issuing the Interests requests with a delay, because it

should benefit from the cached data present on the Router app running on Node B, as a

consequence of a first request done by the first Consumer app instance. Network Node

D also launches this application during the execution of some tests where multiple

Network Nodes, A and D, where simultaneously asking for Interests using this app.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 71

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

 Router – is an application that does nothing but execute the ICON Framework

initialization process. Its purpose is to be able to receive Interests from other Nodes and

forward them to Nodes who can provide the requested Interest. It is also able to receive

Content messages for each Interest it sends, store those Contents in memory, and finally

forward them to the Nodes who have asked for it. This is all done by the ICON

Framework, so the Router application is just a container for it, with the proper

communication interface configurations set up. During tests, the Router application was

executed on the Network Node B.

 Producer – is the application that is responsible to produce content for the Interests that

will be requested during the tests. It listens for messages requesting Interests, processes

them to check if it can produce the Content messages for those Interests, and finally

send those messages back to the Nodes who asked for it. Network Node C is where this

application was executed during the tests that were performed.

The following figure gives a view of the test environment, showing the Network Nodes

and all the applications running on each one. The dashed line between the Network Nodes C &

D means that the Network Node C is a virtual machine hosted by Network Node D, so the

connection to the network of Node C is made through Node D using NAT.

The test was based on data transfers between nodes, so the Producer app running on

Network Node C accesses a repository of files that will be requested by Network Nodes A or

D via the Consumer app, either directly or indirectly through the Router app running on

Network Node B. The files are sent as several blocks of Content messages when the Producer

App: Consumer & Consumer
(Network Node A)

(Windows 8)

App: Router
(Network Node B)

(Ubuntu 11.04)

App: Consumer
(Network Node D)

(Windows 7)

Requests Interest
Receive Content

Store Content
Process Content

Receive Interest
Forward Interest

Store Content
Forward Content

Requests Interest
Receive Content

Store Content
Process Content

100 Mbps Switch

App: Producer
(Network Node C)

(Mac OS X – virtual machine)

Receive Interest
Produce Content
Forward Content

Files repository

Figure 31 - Network Nodes & applications running on each one

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 72

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

app receives Interests and generates Content messages for those Interests. The Producer app

has also configured a communication interface where it will listen for the Interest requests.

The Consumer app uses a XML file where it has specified all the interests it will issue

to the network, and for which, it will wait for and process the received Content messages.

Besides this, the Consumer app also configures the communication interfaces required to route

Interests to the network based on Interest prefixes.

The Router app will not issue any Interests directly, it will only forward Interests it

receives from Network Node A via the Consumer and Consumer’ app instances, or through

Network Node D via the Consumer app. All of them also forward Interests directly to Network

Node C where the Producer app is running. To support this, it only needs to have the

communication interfaces configured to listen and forward Interests to the network.

The tests performed using the Consumer, Router and Producer applications were based

on file transfers, but the ICON Framework running under it is just dealing with Interest

messages and Content messages, so anything can be transferred, live data for instance, to stream

video was also a scenario where the framework was tested.

5.3 Profiling code and optimizations

During the development of the ICON Framework several code analysis were done to

evaluate the performance of the algorithms, response times and bottlenecks.

Code profiling, while running the tests, was one of the most important ways to identify

implementation problems and measure code quality. Presenting here all the analysis that was

done would not be possible or desired, but a simple concrete example will be shown to

demonstrate what was generally done.

Figure 32 shows the hot path of code running on the Producer application while the

tests were running. This is the app that responds with Content messages to the Interests it

receives. The analysis of the hot path shows that the methods that took longer were methods of

the ICON Framework API, which is not strange because the app itself is delegating most of its

work to the API. However, what is strange, is the functions that are doing most individual work

and the percentage they take to do it. System.Threading.Monitor.Enter is related to a threading

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 73

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

lock being acquired, and System.Console.WrileLine is due to informational messages being

written to the console. These functions should not be the ones where the code should be

spending more time, so the code hot path was analyzed.

Figure 32 - Hot paths and functions with most work before code optimizations

Starting the analysis on the ListenerHandler function identified on the hot path, we can

see that inside of it, most of the time is spent on the ProcessInterestMessage and the WrileLine

functions – see Figure 33. Further analysis of the ProcessInterestMessage on Figure 34,

identifies GetContent AddContent and WrileLine as the functions doing most work. A deeper

analysis on the GetContent function presented on Figure 35 identifies the bottleneck – the lock

being acquired to support multithreaded access to the local content store of the Node.

Figure 33 - ListenerHandler function analysis before code optimizations

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 74

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Figure 34 - ProcessInterestMessage function analysis before code optimizations

Figure 35 - GetContent function analysis before code optimizations

It happens that acquiring the lock was taking longer than expected due to the fact that

executing Console.WriteLine takes a long time to run and most of the calls to it were done using

the same thread that was accessing the local storage collection. In this case the improvement

was simple, and it only required to replace all Console.WriteLine calls to Debug.WrileLine

calls so that this negative impact was only noticed during debug builds.

As soon as that change was done, the bottleneck caused when the lock is being

acquired was removed. Figure 36 shows that most of the time is now spent on the clr.dll

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 75

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

assembly, which is part of the Microsft.NET Framework. By analyzing the test results before

and after the code optimization, we can see performance improvements in every scenario where

a concurrency situation occurs, and this is the expected result because now the code locks are

not taking valuable time anymore.

Figure 36 - Hot paths and functions with most work after code optimizations

5.4 Performance tests

While testing the ICON Framework there were several types of tests executed to

evaluate the framework capacity to transfer data on the network. Table 4, presented on Tests

summary section, shows some of the performance tests that were executed. The table includes

the test results before and after the code optimizations mentioned on the previous section, where

improvements on resource locking were done to support the multithreaded environment that

exists inside the ICON Framework.

The first and primary test was to see if the data could effectively be transferred between

Nodes and without information being lost. The ensure this, the first analysis was checking if

the files stored on Network Nodes A & D contained the same information from where they

were transferred. To check this, Interests requested to the network from Network Nodes A & D

should produce a file containing the same information that exists in Network Node C. All the

executed tests produced successful results, which means, all Interests requested by the

Consumer app either from Network Node A or D, always generated the expected files on the

file system of these Nodes, and the consistency observed on all tests provided a great level of

confidence on the system. To further test the ICON Framework, several sets of tests were

executed to validate its efficiency and robustness. The following sections summarize the types

of tests realized.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 76

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.1 Tests summary

This section shows on Table 4 the summary of the tests performed, and the following

sections give a detailed description and analysis for each of these tests.

The legend below provides information on how the tests are presented, and should be

used to read the results:

 Interest(s) – Name of the Interest or Interests identification issued to the network. A

blank cell means that the test is part of the test described on the previous row

 Size (bytes) – Total size, in bytes, of the original content for the Interests requested. A

blank cell means that the test is part of the test described on the previous row

 Description – Brief description of the test performed. A blank cell means that the test is

part of the test described on the previous row

 Nodes running their apps (first column) – Identification of the Node and the applications

that each Node is running

o A = Node A running the Consumer app

o A’ = Node A running the Consumer’ app (second instance)

o B = Node B running Router app

o C = Node C running Producer app

o D = Node D running Consumer app

o > = Interest message sent or forwarded

o » = Content message sent or forwarded

 Nodes running their apps (second column) – The same as above, but required to provide

on two rows metrics for each one of the Consumer app that was running

 Duration – The total time taken to receive the total content after the first Interest

message was sent

 MB/seg – The megabytes per second ratio

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 77

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

Interest(s) Size (bytes) Description Nodes running their apps Duration MB/seg

 Test Set 1 (1 client)

Movie.mp4 132.646.801 First request A>B>C»B»A A>B>C»B»A 00:00:50 2,53

Movie.mp4 132.646.801 First request (after code optimization) A>B>C»B»A A>B>C»B»A 00:00:45 2,81

Movie.mp4 132.646.801 Second request A>B»A A>B»A 00:00:21 6,02

Movie.mp4 132.646.801 Second request (after code optimization) A>B»A A>B»A 00:00:21 6,02

Movie.mp4 132.646.801 Second request D>B»D D>B»D 00:00:21 6,02

 Test Set 2 (2 clients, A & A’ request simultaneously)

Movie.mp4 132.646.801 First request A+A’>B>C»B»A+A’ A>B>C»B»A 00:00:52 2,43

 A’>B»A’ 00:00:51 2,48

Movie.mp4 132.646.801 First request (after code optimization) A+A’>B>C»B»A+A’ A>B>C»B»A 00:00:51 2,48

 A’>B»A’ 00:00:51 2,48

Movie.mp4 132.646.801 Second request A+A’>B»A+A’ A>B»A 00:00:27 4,69

 A’>B»A’ 00:00:27 4,69

Movie.mp4 132.646.801 Second request (after code optimization) A+A’>B»A+A’ A>B»A 00:00:27 4,69

 A’>B»A’ 00:00:27 4,69

 Test Set 3 (2 clients, A & D request simultaneously)

Movie.mp4 132.646.801 First request A+D>B>C»B»A+D A>B>C»B»A 00:00:51 2,48

 D>B»D 00:00:50 2,53

Movie.mp4 132.646.801 Second request A+D>B»A+D A>B»A 00:00:30 4,22

 D>B»D 00:00:29 4,36

Movie.mp4 132.646.801 Second request (after code optimization) A+D>B»A+D A>B»A 00:00:29 4,36

 D>B»D 00:00:27 4,69

 Test Set 4 (2 clients, A & A’ or A & D request with ~10 sec. delta)

Movie.mp4 132.646.801 First request A+A’>B>C»B»A+A’ A>B>C»B»A 00:00:51 2,48

 A’>B»A’ 00:00:41 3,09

Movie.mp4 132.646.801 First request (after code optimization) A+A’>B>C»B»A+A’ A>B>C»B»A 00:00:50 2,53

 A’>B»A’ 00:00:39 3,24

Movie.mp4 132.646.801 First request A+D>B>C»B»A+D A>B>C»B»A 00:00:51 2,48

 D>B»D 00:00:41 3,09

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 78

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

 Test Set 5 (2 clients, A & A’ or A & D request with ~20 sec. delta)

Movie.mp4 132.646.801 First request A+A’>B>C»B»A+A’ A>B>C»B»A 00:00:52 2,43

 A’>B»A’ 00:00:40 3,16

Movie.mp4 132.646.801 First request (after code optimization) A+A’>B>C»B»A+A’ A>B>C»B»A 00:00:51 2,48

 A’>B»A’ 00:00:30 4,22

Movie.mp4 132.646.801 First request A+D>B>C»B»A+D A>B>C»B»A 00:00:52 2,43

 D>B»D 00:00:32 3,95

 Test Set 6 (1 client, 7 files of 23.129.260 bytes each)

Zipfile_1.zip to Zipfile_7.zip 161.904.820 First request A>B>C»B»A A>B>C»B»A 00:00:36 4,29

Zipfile_1.zip to Zipfile_7.zip 161.904.820 First request (after code optimization) A>B>C»B»A A>B>C»B»A 00:00:20 7,72

Zipfile_1.zip to Zipfile_7.zip 161.904.820 Second request A>B»A A>B»A 00:00:18 8,58

Zipfile_1.zip to Zipfile_7.zip 161.904.820 Second request (after code optimization) A>B»A A>B»A 00:00:16 9,65

 Test Set 7 (1 client, 175 files of 879.394 bytes each)

Img(1).zip to Img(175).zip 153.893.950 First request A>B>C»B»A A>B>C»B»A 00:00:40 3,67

Img(1).zip to Img(175).zip 153.893.950 First request (after code optimization) A>B>C»B»A A>B>C»B»A 00:00:20 7,34

Img(1).zip to Img(175).zip 153.893.950 Second request A>B»A A>B»A 00:00:22 6,67

Img(1).zip to Img(175).zip 153.893.950 Second request (after code optimization) A>B»A A>B»A 00:00:20 7,34

Img(1).zip to Img(175).zip 153.893.950 Second request A>C»A A>C»A 00:00:21 6,99

Img(1).zip to Img(175).zip 153.893.950 Second request (after code optimization) A>C»A A>C»A 00:00:20 7,34

 Test Set 8 (1 client,8 files with sizes between 561.276 and 879.394)

8 files with different sizes 5.837.151 First request A>B>C»B»A A>B>C»B»A 00:00:03 1,86

8 files with different sizes 5.837.151 First request (after code optimization) A>B>C»B»A A>B>C»B»A 00:00:01 5,57

8 files with different sizes 5.837.151 Second request A>B»A A>B»A 00:00:02 2,78

8 files with different sizes 5.837.151 Second request (after code optimization) A>B»A A>B»A 00:00:01 5,57

Table 4 – Test results

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 79

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.2 Test Set 1

5.4.2.1 Test description

 A Consumer app requests an Interest to the network where the Interest is routed via

Network Node B

 Interests are sent sequentially and upon Content retrieval until the last Content message

is received

 Measures were taken for first and second requests

 For the second request Network Node B no longer forwards the Interest to Network

Node C because it has already cached, in the local storage, the Content for the Interests

requested after the first run

5.4.2.2 Test results

Figure 37 - Graphical analysis for test set 1

A>B>C»B»A A>B>C»B»A A>B»A A>B»A

First request
First request (after
code optimization)

Second request
Second request

(after code
optimization)

MB/seg 2,53 2,81 6,02 6,02

Duration 00:00:50 00:00:45 00:00:21 00:00:21

00:00:00

00:00:09

00:00:17

00:00:26

00:00:35

00:00:43

00:00:52

00:01:00

0

1

2

3

4

5

6

7

Test Set 1 (1 client)

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 80

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.2.3 Test analysis

 A slight improvement for the first request test, noticed when the test was executed with

the code optimized. This was the expected result, since the code improvements were

done to improve parallel execution. Although this was not the focus of this test, Node B

still has some parallel execution to process Interest requests from Node A and Content

messages from Node C

 No improvements on the second request, when we compare the before and after code

optimization. This was the expected result, since Node B is now processing just the

Interests requests from Node A, which are sequential. As there is no parallelization

occurring on Node B, the optimizations done on the code have no effect, so there is no

improvement on the test results

 An improvement, 114% looking at the values of the optimized code, between the first

and second requests. This was the expected result, since the second request can now

retrieve the contents from Node B, because the contents were cached on the first request

5.4.3 Test Set 2 and 3

5.4.3.1 Test description

 Multiple Consumer apps running on Network Node A only or in Network Node A and

D, which request an Interest to the network where the Interest is routed via Network

Node B

 Interests are sent sequentially and upon Content retrieval until the last Content message

is received

 Measures were taken for first and second requests

 For the first request, clients A’ and D will get content messages directly from Network

Node B, which no longer forwards Interests to Network Node C because it has already

cached, in the local storage, the Content for the Interests requested from the client A

 For the second request Network Node B no longer forwards the Interest to Network

Node C because it has already cached, in the local storage, the Content for the Interests

requested after the first run

 Interest requests were issued at the same time on both application Nodes

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 81

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.3.2 Test results

Figure 38 - Graphical analysis for test set 2

Figure 39 - Graphical analysis for test set 3

A>B>C»B»A A’>B»A’ A>B>C»B»A A’>B»A’ A>B»A A’>B»A’ A>B»A A’>B»A’

First request First request
First request
(after code

optimization)

First request
(after code

optimization)

Second
request

Second
request

Second
request (after

code
optimization)

Second
request (after

code
optimization)

MB/seg 2,43 2,48 2,48 2,48 4,69 4,69 4,69 4,69

Duration 00:00:52 00:00:51 00:00:51 00:00:51 00:00:27 00:00:27 00:00:27 00:00:27

00:00:00

00:00:09

00:00:17

00:00:26

00:00:35

00:00:43

00:00:52

00:01:00

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Test Set 2 (2 clients, A & A’ request simultaneously)

A>B>C»B»A D>B»D A>B»A D>B»D A>B»A D>B»D

First request First request
Second
request

Second
request

Second
request (after

code
optimization)

Second
request (after

code
optimization)

MB/seg 2,48 2,53 4,22 4,36 4,36 4,69

Duration 00:00:51 00:00:50 00:00:30 00:00:29 00:00:29 00:00:27

00:00:00

00:00:09

00:00:17

00:00:26

00:00:35

00:00:43

00:00:52

00:01:00

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Test Set 3 (2 clients, A & D request simultaneously)

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 82

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.3.3 Test analysis

 A slight improvement for the first request test when the A>B>C»B»A + A’>B»A’ and

A>B>C»B»A + D>B»D tests were executed. This occurs because clients A’ and D will

get content messages directly from Network Node B, which no longer forwards Interests

to Network Node C because it has already cached, in the local storage, the Content for

the Interests requested from the client A. Test sets 4 and 5 will show better results on

this point, since a delay for clients A’ and D to start issuing Interests will be introduced

 Almost no improvements, or no improvements at all on the second request, when we

compare the before and after code optimization. This was the expected result, since

Node B is now processing the Interests requests from Node A and Node D, which are

few clients to cause a great level of concurrent operations. As there is almost no

parallelization occurring on Node B, the optimizations done on the code have no effect,

so there is no improvement on the test results

 An improvement, 89% if we look at the values of the optimized code, between the first

and second requests. This was the expected result, since the second request can now

retrieve the contents from Node B, because the contents were cached on the first request.

 Comparing test sets 2 and 3 we can observe similar results, which means we have similar

performance indicators whether we run a second instance of the Consumer application

on the same network Node, or in different network Nodes

5.4.4 Test Set 4 and 5

5.4.4.1 Test description

 The same type of test that was described in Test Set 2 and 3, with the exceptions below

 Measures were taken for first request only

 In Test Set 4 and 5, the second application will issue Interest requests with a delta of 10

and 20 seconds respectively

 The delayed requests done by the consumer applications A' or D will benefit from the

cache of Content messages on Node B, as a result of the first requests being done by the

consumer application A

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 83

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.4.2 Test results

Figure 40 - Graphical analysis for test set 4

Figure 41 - Graphical analysis for test set 5

A>B>C»B»A A’>B»A’ A>B>C»B»A A’>B»A’ A>B>C»B»A D>B»D

First request First request
First request
(after code

optimization)

First request
(after code

optimization)
First request First request

MB/seg 2,48 3,09 2,53 3,24 2,48 3,09

Duration 00:00:51 00:00:41 00:00:50 00:00:39 00:00:51 00:00:41

00:00:00

00:00:09

00:00:17

00:00:26

00:00:35

00:00:43

00:00:52

00:01:00

0

0,5

1

1,5

2

2,5

3

3,5

Test Set 4 (2 clients, A & A’ or A & D request with ~10 sec. delta)

A>B>C»B»A A’>B»A’ A>B>C»B»A A’>B»A’ A>B>C»B»A D>B»D

First request First request
First request
(after code

optimization)

First request
(after code

optimization)
First request First request

MB/seg 2,43 3,16 2,48 4,22 2,43 3,95

Duration 00:00:52 00:00:40 00:00:51 00:00:30 00:00:52 00:00:32

00:00:00

00:00:09

00:00:17

00:00:26

00:00:35

00:00:43

00:00:52

00:01:00

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Test Set 5 (2 clients, A & A’ or A & D request with ~20 sec. delta)

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 84

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.4.3 Test analysis

 We can see a significant improvement of the first requests on the Consumer applications

that issued the requests with the 10 and 20 second delay. This improvement occurs

because these applications benefit the fact that a previous application, Consumer

application A, has already asked for the same contents, which are now cached on

network Node B, and ready to be delivered to any consumer application that asks for

them

 As expected, the improvement is higher on the optimized code where we can see an

improvement of 70% for the 20 second delay. In this scenario there is much more

parallelized code running on network Node B. This Node is now processing interests

from the consumer application A and forwarding them to network Node C. At the same

time, and after the defined delay, it starts to receive interests from the consumer

application A’ or D, and these will be served directly from its cache. While this process

occurs, it is also receiving Content messages for the interests forwarded to network

Node C

 The higher the delay the higher the improvement. This is normal and expected since a

lower delay will be faster to try to get Content messages that are not in cache yet, and

from that point on, the Node will be in the same scenario that was demonstrated in Test

Set 2 and 3. If we compare the A’>B»A’ tests of the optimized code between Test Set

4 and 5, we can see an improvement of 30%, and if we compare the result of Test Set 5

with the same test result obtained on Test Set 2, we see an increase of 70%, which

corroborates the percentage referred on the second point of this analysis

5.4.5 Test Set 6

5.4.5.1 Test description

 A unique Consumer app running on Node A requests 7 Interests to the network where

the Interests are routed via Network Node B

 Interests are sent sequentially and upon Content retrieval until the last Content message

is received, but since multiple different Interests were requested initially this causes

multiple threads to request Interests simultaneously to the network

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 85

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

 Measures were taken for first and second requests

 For the second request Network Node B no longer forwards the Interest to Network

Node C because it has already cached, in the local storage, the Content for the Interests

requested after the first run

5.4.5.2 Test results

Figure 42 - Graphical analysis for test set 6

5.4.5.3 Test analysis

 This test shows the Node behavior while handling concurrent requests, and

demonstrates how the code optimizations produced an improvement when several input

and output operations are processed by the Node

 For the first request we can see an improvement of 80%. The improvement was expected

since the code optimizations provided a better handling of parallelized code to any kind

of Node – Consumer, Router or Producer

 Improvements between the second requests are also seen, although in a lower

percentage – 12%.

 The results seen on previous tests continue to be present here, as we can see an

improvement of 25% between the first and second requests on the optimized code. Once

A>B>C»B»A A>B>C»B»A A>B»A A>B»A

First request
First request (after
code optimization)

Second request
Second request

(after code
optimization)

MB/seg 4,29 7,72 8,58 9,65

Duration 00:00:36 00:00:20 00:00:18 00:00:16

00:00:00

00:00:04

00:00:09

00:00:13

00:00:17

00:00:22

00:00:26

00:00:30

00:00:35

00:00:39

0

2

4

6

8

10

12

Test Set 6 (1 client, 7 files of 23.129.260 bytes each)

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 86

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

again, in this situation the results are due to the Node cache. The increase here is not as

high as we have seen in other tests, because the first request has already improved

significantly. This occurs because multiple concurrent interests are being sent to the

network, and the code was optimized to handle these scenarios efficiently

 This test also reached the highest throughput 9,65 MB/sec, using 77% of the network

bandwidth. The Node cache and the capacity of a Node to process requests concurrently

contribute to such result

5.4.6 Test Set 7

5.4.6.1 Test description

 The same type of test that was described in Test Set 6, but with the exceptions below

 The consumer application request 175 Interests instead of 7

 Since Network Node B is a slower machine, measures were also taken between Network

Nodes A and C without going through Node B

5.4.6.2 Test results

Figure 43 - Graphical analysis for test set 7

A>B>C»B»A A>B>C»B»A A>B»A A>B»A A>C»A A>C»A

First request
First request
(after code

optimization)

Second
request

Second
request (after

code
optimization)

Second
request

Second
request (after

code
optimization)

MB/seg 3,67 7,34 6,67 7,34 6,99 7,34

Duration 00:00:40 00:00:20 00:00:22 00:00:20 00:00:21 00:00:20

00:00:00

00:00:04

00:00:09

00:00:13

00:00:17

00:00:22

00:00:26

00:00:30

00:00:35

00:00:39

00:00:43

0

1

2

3

4

5

6

7

8

Test Set 7 (1 client, 175 files of 879.394 bytes each)

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 87

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.6.3 Test analysis

 With more files being requested, the difference on the first request after code

optimizations reached 100%

 For the first time, the first and second requests on the optimized code reached the same

values. This can be justified because of the significant increase in performance that was

seen on the first request, which was only possible because of the large support for

parallelization that was placed on the ICON Framework

 Network Node B was the slowest machine and the one with less RAM available. By

having the same results between tests A>B»A and A>C»A we conclude that the ICON

Framework can produce similar results even when executed in systems with very

different hardware configurations

5.4.7 Test Set 8

5.4.7.1 Test description

 A unique Consumer app running on Node A requests 8 Interests to the network where

the Interests are routed via Network Node B

 Interests are sent sequentially and upon Content retrieval until the last Content message

is received, but since multiple different Interests were requested initially this causes

multiple threads to request Interests simultaneously to the network

 Measures were taken for first and second requests

 For the second request Network Node B no longer forwards the Interest to Network

Node C because it has already cached, in the local storage, the Content for the Interests

requested after the first run

 The full size of the Content for each requested Interest is different

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 88

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.4.7.2 Test results

Figure 44 - Graphical analysis for test set 8

5.4.7.3 Test analysis

 The analysis of the results of this test show the same tendency of the ones described

previously, particularly the ones for Test Set 7

 In this test the gain for the first request on the optimized code reached 199%

 For the second request, the code optimization produced a gain of 100%

 And again, the first and second requests reached the same values on the optimized code,

but in this case the files had different sizes and were only 8 files.

5.4.8 Test analysis summary

The analysis of the tests reveals the expected behavior and the gains brought by the

fact of Nodes being able to locally store Content. This can be seen by the fact that on all tests,

the second request always takes less time to get the content, and this happens because the

content is retrieved directly from the Node B where the Router app is caching Content

messages. This cache behavior can also be seen when multiple Consumer instances are asking

for the same Interests, but with some delay – in the case of test 4 and 5. In these cases, the

A>B>C»B»A A>B>C»B»A A>B»A A>B»A

First request
First request (after
code optimization)

Second request
Second request

(after code
optimization)

MB/seg 1,86 5,57 2,78 5,57

Duration 00:00:03 00:00:01 00:00:02 00:00:01

00:00:00

00:00:00

00:00:01

00:00:01

00:00:02

00:00:02

00:00:03

00:00:03

00:00:03

0

1

2

3

4

5

6

Test Set 8 (1 client, 8 files with sizes between 561.276 and 879.394)

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 89

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

second instance always receives the Content much faster, because once again, it benefits from

the fact that the first instance had already asked for the Interests, for which the Content messages

were then stored locally on Node B that is running the Router app, that also provides Content

messages to the second instance of the Consumer app. This appends because the Content

messages stored in the local Node cache are valid to be send once the Node receives an Interest

that can be satisfied by this data, avoiding unnecessary requests to the Content producers. This

shows that a network environment with more Nodes similar to the Router application could

bring benefits the overall data flow. This will give data producers less work, since they will not

have to provide the same Content so often, and at the same time it will keep data closer to the

consumers bringing better response times to the data requested. The content centric network

architecture played a key role to achieve these results. It is the nature of this network, which

brings the possibility to route data instead of machines or IP addresses, combined with the

cached Contents on each Node that produces such gains.

The implementation also demonstrates the ICON Framework implementation

efficiency when it was able to process up to 175 concurrent requests without losing Content

packets and by keeping the data transfer rate at an acceptable level.

The improvements done based on the code profiling were also quite noticeable, as we

can see, almost all of the tests performed after the code optimization provided better results,

and especially those where concurrency exists, if we look at the test sets 6, 7 and 8, where

multiple concurrent requests are done because the tests are requesting Interests in parallel, the

improvement is evident, on test set 7 the first request dropped from 40 to 20 seconds. These

improvements were done continuously and through all the implementation phase of ICON

Framework, so the differences measured here were just a simple example of the gains brought

to the system just by doing code optimizations based on code execution analysis. The gains

shown here are more noticeable on tests where concurrency exists, because the code was

optimized to reduce significantly the time to acquire a lock during execution of parallelized

code.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 90

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

5.5 Other tests performed

Besides the tests described in the previous sections, other tests were realized to further

validate the architecture and the implementation of the solution.

One of those tests was seeing how the proposed solution would handle

communications under scenarios where network failures occur frequently or have a highly

variable or extreme performance, and thus prove is robustness. This type of test was of major

importance, since opportunistic networks emerge and live in such environments, so ensuring

that the ICON Framework was able to work efficiently under those circumstances need to be

proven. A video with these tests was published and can be viewed or downloaded using any of

the following addresses:

 http://www.youtube.com/watch?v=ExZ_wxLK1lY

 https://skydrive.live.com/redir?resid=30C3E79A52875CB2!1065&authkey=!ACD6Z

QKBL5UjIAA

Another test was targeted to live data, for instance capturing video from a web cam

and stream it live with a producer app was also an important point to validate. Live streaming

normally requires a relatively constant data transfer bit rate to ensure some quality, so putting

the ICON Framework under such test and checking the results was also a major goal.

With these two types of tests in mind two apps were created. A first app capable of

connect to the PC web cam and capture video frames from it, will act as the Content producer.

While doing it, the app also stores approximately and consistently four seconds of frames on

the local storage of the ICON Framework Node it contains. This app also listens for Interests

requiring live streaming under the Name prefix ccn4d:liveStream, which in turn will be satisfied

by the Contents stored in the local Node’s memory storage.

A second application would play the Consumer role. As such, it will send Interest requests

to the network using the Name ccn4d:liveStream/<CurrentDateTime.Ticks>, where

CurrentDateTime.Ticks is a number that represents the current date and time. When the Content

messages for the requested Interests are received, which contain the captured video frames, the

app will show them in sequence on a window, reproducing the video captured by the camera

on the producer Node.

http://www.youtube.com/watch?v=ExZ_wxLK1lY
https://skydrive.live.com/redir?resid=30C3E79A52875CB2!1065&authkey=!ACD6ZQKBL5UjIAA
https://skydrive.live.com/redir?resid=30C3E79A52875CB2!1065&authkey=!ACD6ZQKBL5UjIAA

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 91

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

During this data transmission network failures

were forced which caused the live stream to stop, but as

soon as the network connection between Nodes was

restored, the video stream continued at the time where the

network interruption was fixed.

These interruption tests were also performed on

the tests described earlier in this chapter, and also

produced the expected results. In fact the video prepared

for the CCNxCON 2012 Conference, where the ICON

Framework was presented demonstrates this situation,

but these were essentially preliminary tests that revealed

a stable solution, capable to address the targeted scenarios

and environments, so a deeper analysis should be made

to quantify and measure these results.

Figure 45 - Video streaming apps

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 92

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

6 Conclusions

Since the early days of computer networks, the world has gone through tremendous

changes. The architecture of these networks has not changed much during the past half century,

but the way we access digital information today is way too different from how we have done it

on those early days.

Information Centric Networks are on the current agenda, its concepts can ensure that

the use we make of networks can scale better to achieve the challenges of tomorrow. The CCNx

project architecture proposes a solution based on hierarchical names to route data, retaining the

simplicity and scalability if IP networks but offering much better delivery efficiency and

disruption tolerance.

With the increasingly trend to access information using mobile devices, where

communications typically are slower and unstable, Information Centric Networks open new

perspectives of data retrieval, transport and delivery. Opportunistic networks built on top of

such networks will benefit from their hop-by-hop data transfer nature, where data can be

progressively carried without the need to flow through all the way again, when packets are

missed or the device changes to another network.

The main objective of this dissertation was centered on studying, exploring and

experimenting with Information Centric Networks and building a prototype of such a network

which could be used on opportunistic networks under several platforms. Most of these goals

were achieved and the tests results demonstrated that data transmissions could be more efficient

and tolerant to network failures by the fact that the principles behind Information Centric

Networks were used.

The produced prototype only addresses the basic concepts of Information Centric

Networks, which means, data is transferred based on the requested information and any host

details were left out of the protocol definition. Content for those requests is returned by

traversing the reverse path using the breadcrumbs left on each Node whenever an Interest

arrives on a communication interface. Data is persisted on the Nodes, which improved the

efficiency and fault tolerance of communications.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 93

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

The sample apps, used to test the prototype were simple to develop and at no point of

code required to mention references to host of any kind. The apps only needed to ask for the

Data they needed regarding where it was. These apps, that were built using the ICON

Framework, were presented on September 12, 2012 during the CCNxCON 2012 Conference at

INRIA Sophia Antipolis, France. The conference served to show the architecture of the ICON

Framework in public for the first time, where some of the similarities and differences with the

CCNx platform where discussed, being the cross-platform and modularity nature behind its

design the points that showed most interest from the audience. The ICON Framework was

presented with a poster, a video and the sample applications. The video is available on two

locations for visualization or download:

 https://skydrive.live.com/redir?resid=30C3E79A52875CB2!1065&authkey=!ACD6Z

QKBL5UjIAA

 http://www.youtube.com/watch?v=ExZ_wxLK1lY

Nevertheless, the work developed is just a prototype, a proof of concept we may say,

which means there is a lot space for improvements. Security for instance, was left off for

simplicity but it will not be hard to add it to the solution. Besides all performance tests and code

analysis realized which greatly improved to final result, different usage scenarios will definitely

find room for more improvements on some of the implemented algorithms. The future

implementation of a Decision Engine module, which effectively could make decisions based

on data gathered by the Node’s statistics, will definitely bring major improvements to the

solution.

Finally, the success of this dissertation can be resumed in the next six items:

 Brought knowledge about Information Centric Networks and Opportunistic Networks;

 Proposed an Information Centric Architecture called ICON Framework;

 Delivered code running for the implementation of the ICON Framework;

 Provided sample apps built on top of the ICON Framework;

 The ICON efficiency, as demonstrated by the tests performed;

 ICON Framework presented at the CCNxCON annual conference on September 2012

https://skydrive.live.com/redir?resid=30C3E79A52875CB2!1065&authkey=!ACD6ZQKBL5UjIAA
https://skydrive.live.com/redir?resid=30C3E79A52875CB2!1065&authkey=!ACD6ZQKBL5UjIAA
http://www.youtube.com/watch?v=ExZ_wxLK1lY

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 94

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

7 Bibliography

[1] Palo Alto Research Center - PARC, "CCNx," [Online]. Available:

http://www.ccnx.org/. [Accessed 22 September 2012].

[2] University of California at Los Angeles (UCLA), "Named Data Networking," [Online].

Available: http://www.named-data.net/. [Accessed 17 August 2012].

[3] J. Scott, P. Hui, J. Crowcroft and C. Diot, "Haggle: a Networking Architecture Designed

Around Mobile Users," in Third Annual IFIP Conference on Wireless On-Demand

Network Systems and Services, 2006.

[4] University of Paderborn, "NetInf," [Online]. Available:

http://www.netinf.org/home/home/. [Accessed 13 September 2012].

[5] F. Warthman, "Delay-Tolerat Networks (DTNs)," Warthman Associates, 2003.

[6] W. Moreira and P. Mendes, "Routing in Opportunistic Networks," in Social-aware

Opportunistic Routing: The new trend, Springer, August, 2013.

[7] W. Moreira, P. Mendes and S. Sargento, "Assessment Model for Opportunistic

Routing," IEEE Latin America Transactions, vol. 10, no. 3, April 2012.

[8] W. Moreira, P. Mendes and S. Sargento, "Opportunistic Routing based on daily

routines," IEEE AOC 2012, June 2012.

[9] W. Moreira, M. de Sousa, P. Mendes and S. Sargento, "Study on the Effect of Network

Dynamics on Opportunistic Routing," in adhoc Now, Belgrad, Servia, July 2012.

[10] T. Hossmann, F. Legendre and T. Spyropoulos, "From Contacts to Graphs: Pitfalls in

Using Complex Network Analysis for DTN Routing".

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 95

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

[11] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall and H. Weiss,

"Delay tolerant network architecture," IETF, 2007.

[12] N. Morais, B. Batista and P. Mendes, "CCN support for Information-Centric

Oportunistic Networking," in CCNxCon2012, Sophia Antipolis, France, September

2012.

[13] Xamarin, "Mono," [Online]. Available: http://www.mono-project.com/Main_Page.

[Accessed 1 August 2012].

[14] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G.

Tsudik, k. claffy, D. Krioukov, D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang,

P. Crowley and E. Yeh, "Named Data Networking (NDN) Project," October, 2010.

[15] CCNx Conference, "CCNx 2012 Conference Program," 13 September 2012. [Online].

Available: http://www.ccnx.org/ccnxcon2012/program/. [Accessed 7 October 2012].

[16] B. Batista and P. Mendes, "ICON - Information and Context Oriented Networking," in

CCNcCon, Palo Alto, USA, Sept. 2013.

[17] M. Chawla, T. Koponen, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker and I.

Stoica, "A Data-Oriented (and Beyond) Network Architecture," SIGCOMM’07:

Proceedings of the 2007 conference on Applications, technologies, architectures, and

protocols for computer communications, p. 181–192, 2007.

[18] M. Gritter and D. R. Cheriton, "TRIAD: A New Next-Generation Internet Architecture,"

Stanford University, 2000.

[19] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs and R. L.

Braynard, "Networking Named Content," ACM, Rome, Italy, 2009.

[20] Palo Alto Research Center, "About CCNx," [Online]. Available:

http://www.ccnx.org/about/. [Accessed 15 September 2011].

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 96

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

[21] Z. Lixia, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G.

Tsudik, K. Claffy, D. Krioukov, D. Massey, C. Papadopoulos, T. Adbelzaher, L. Wang,

P. Crowley and E. Yeh, "Named Data Networking (NDN) Project," Named Data

Networking, October, 2010.

[22] Wikipedia, "Event-Driven Messaging," 7 June 2011. [Online]. Available:

http://en.wikipedia.org/wiki/Event-Driven_Messaging. [Accessed 13 October 2010].

[23] Google, "Protocol Buffers," April 2012. [Online]. Available:

https://developers.google.com/protocol-buffers/. [Accessed 28 October 2012].

[24] W. Moreira and P. Mendes, "Survey on Opportunistic Routing for Delay/Disruption

Tolerant Networks," SITI, Lisbon, 2010.

[25] Google Project Hosting, "protobuf - Protocol Buffers - Google's data interchange format

- Google project hosting," September 2012. [Online]. Available:

http://code.google.com/p/protobuf/. [Accessed 13 September 2012].

[26] M. Gravell, "protobuf-net - Fast, portable, binary serialization for .NET - Google Project

Hosting," September 2012. [Online]. Available: http://code.google.com/p/protobuf-net/.

[Accessed 28 October 2012].

[27] CCNx, "CCNx Protocol," November 2011. [Online]. Available:

http://www.ccnx.org/releases/ccnx-0.2.0/doc/technical/CCNxProtocol.html. [Accessed

13 September 2012].

[28] E. Nordström, P. Gunningberg and C. Rohner, "A Search-based Network Architecture

for Mobile Devices," Uppsala University, 2009.

[29] A. Kennedy and D. Syme, "Design and Implementation of Generics for the .NET

Common Language Runtime," in ACM SIGPLAN Conference on Programming

Language Design and Implementation, Snowbird, Utah, USA, 2001.

Nelson da Silva Teigas Morais

Prototyping an Information Centric Architecture for Opportunistic Networks

 Universidade Lusófona de Humanidades e Tecnologias, 97

Escola de Comunicação, Artes e Tecnologias da Informação

SITILabs – Unidade de Investigação em Sistemas e Tecnologias Informáticas

[30] Wikipedia, "Generic programming," 13 10 2013. [Online]. Available:

http://en.wikipedia.org/wiki/Generic_programming.

[31] M. Fowler, "Inversion of Control Containers and the Dependency Injection pattern," 23

January 2004. [Online]. Available: http://martinfowler.com/articles/injection.html.

[Accessed 12 January 2013].

	1 Introduction
	1.1 Technical Background
	1.1.1 Content Centric Networks
	1.1.2 Opportunistic Networks

	1.2 Objectives
	1.3 Document structure

	2 Content Centric and Opportunistic Networks
	2.1 Named Data Networks and the CCNx project
	2.1.1 Names
	2.1.2 Routing and Forwarding
	2.1.3 Caching
	2.1.4 Pending Interest Table – PIT
	2.1.5 Transport
	2.1.6 ICON Framework and the CCNx project

	2.2 Opportunistic networks and the Haggle project
	2.2.1 Haggle Network Architecture
	2.2.2 ICON Framework and the Haggle project

	3 The ICON Framework
	3.1 Introduction
	3.2 Protocol
	3.2.1 Message format and encoding
	3.2.2 Content Identification
	3.2.3 Message Types
	3.2.4 Data exchange between nodes

	3.3 Node Model
	3.3.1 Decision Engine
	3.3.2 Data Engine
	3.3.2.1 Content Store Control
	3.3.2.2 Metadata Store Control
	3.3.2.2.1 PIT Manager – Pending Interest Table Manager
	3.3.2.2.2 FIB Manager – Forwarding Information Base Manager

	3.3.2.3 Security and Privacy
	3.3.2.4 Sequencing

	3.3.3 Network Engine
	3.3.3.1 Handle Interest Messages
	3.3.3.2 Handle Content Messages

	4 ICON Framework Implementation and Usage
	4.1 Implementation
	4.1.1 Decision Engine
	4.1.2 Network Engine
	4.1.3 Data Engine

	4.2 Source code and the project structure
	4.2.1 Dependency Injection
	4.2.2 Protocol
	4.2.3 Network

	4.3 Using the ICON Framework
	4.4 Node information available at runtime

	5 Testing the ICON Framework
	5.1 Test configuration
	5.2 Test description
	5.3 Profiling code and optimizations
	5.4 Performance tests
	5.4.1 Tests summary
	5.4.2 Test Set 1
	5.4.2.1 Test description
	5.4.2.2 Test results
	5.4.2.3 Test analysis

	5.4.3 Test Set 2 and 3
	5.4.3.1 Test description
	5.4.3.2 Test results
	5.4.3.3 Test analysis

	5.4.4 Test Set 4 and 5
	5.4.4.1 Test description
	5.4.4.2 Test results
	5.4.4.3 Test analysis

	5.4.5 Test Set 6
	5.4.5.1 Test description
	5.4.5.2 Test results
	5.4.5.3 Test analysis

	5.4.6 Test Set 7
	5.4.6.1 Test description
	5.4.6.2 Test results
	5.4.6.3 Test analysis

	5.4.7 Test Set 8
	5.4.7.1 Test description
	5.4.7.2 Test results
	5.4.7.3 Test analysis

	5.4.8 Test analysis summary

	5.5 Other tests performed

	6 Conclusions
	7 Bibliography

