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Abstract

Plants synthesized an enormous variety of metabolites

that can be classified into two groups based on their functions:

primary metabolites, which participate in nutrition and essen-

tial metabolic processes within the plant, and secondary

metabolites (also referred to as natural products), which influ-

ence ecological interactions between plants and their environ-

ment. The carotenoids pigments are secondary metabolites of

isoprenoid origin. Despite their diversity of functions and

structures, all isoprenoids derive from the common five-car-

bon (C5) building units isopentenyl diphosphate (IPP) and its

isomer dimethylallyl diphosphate (DMAPP). More complex

isoprenoids are usually formed by «head-to-tail» or «head-to-

head» addition of isoprene units. The most prevalent tetrater-

penes (C40) are carotenoids, which are pigments in many

flowers and fruits. In this paper we discuss some aspects of

carotenoid biosynthesis. The pathway involves a series of

desaturations, cyclizations, hydroxylations, and epoxidations,

commencing with the formation of phytoene. The pathway

begins with the synthesis of IPP from the mevalonic acid

(MVA) pathway and/or methylerythritol 4-phosphate (MEP)

pathway.

Resumo

As plantas sintetizam uma enorme variedade de

metabolitos, que podem ser classificados em dois grupos, de

acordo com as suas funções: metabolitos primários, que

participam na nutrição e processos metabólicos essenciais no

interior da própria planta, e metabolitos secundários

(também referidos como produtos naturais), os quais

influenciam as interacções ecológicas entre as plantas e o

ambiente. Os carotenóides são metabolitos secundários

derivados do isopreno. O isopentenil-pirofosfato (IPP) é a

unidade básica para a biossíntese dos carotenóides. O

esqueleto carbonado dos carotenóides é sintetizado por adição

sucessiva das unidades em C5 que vão formar geranil-

geranilpirofosfato, intermediário em C20 que por condensação

origina a estrutura em C40. Recentemente assumia-se que

todos os isoprenóides se sintetizavam a partir do acetil-CoA via

ácido mevalónico. Estudos recentes mostraram que o

percurso metabólico começa com a síntese do IPP via ácido

mevalónico (MVA) e/ou via metileritritol 4-fosfato (MEP).

Neste trabalho discutem-se os avanços no conhecimento

destas diferentes vias metabólicas assim como as enzimas e
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reacções envolvidas na biossíntese dos carotenóides a partir da

unidade fundamental (IPP). 

1

Introduction

Plants synthesize an enormous variety of metabolites that

can be classified into two groups based on their function: pri-

mary metabolites, which participate in nutrition and essential

metabolic processes within the plant, and secondary metabo-

lites (natural products), which influence ecological interac-

tions between plants and their environment (Croteau et al.,

2000). Isoprenoids (also called terpenoids) play diverse func-

tional roles in plants as hormones (gibberellins, abscisic acid),

photosynthetic pigments (phytol, carotenoids), electron carri-

ers (ubiquinone, plastoquinone), mediators of polysaccharide

assembly (polyprenyl phosphates), and structural compo-

nents of membranes (phytosterols). In addition to these uni-

versal physiological, metabolic, and structural, the highest

variety of isoprenoids (commonly in the C10, C15 and C20 fami-

lies) is secondary metabolites that function in protecting

plants against herbivores and pathogens, in attracting pollina-

tors and seed-dispersing animals, and allelochemicals that

influence competition among plant species (Croteau et al.,

2000). Many compounds with important commercial value as

flavors, pigments, polymers, fibers glues, waxes, drugs, or

agrochemicals are secondary metabolites of isoprenoid origin

(Rodríguez-Concepción and Boronat, 2002) 

Carotenoids are naturally occurring pigments synthe-

sized as hydrocarbons (carotenes) and their oxygenated deriv-

atives (xanthophylls) by plants and microorganisms. They

consist of eight isoprenoid units joined in such a manner that

the arrangement of isoprenoid units is reversed at the center

of the molecule so that the two central methyl groups are in a

1,6-positional relationship and the remaining nonterminal

methyl groups are in a 1,5 – positional relationship. All

carotenoids may be formally derived from the acyclic C40H56

structure, having a long central chain of conjugated double

bonds, by (I) hydrogenation, (II) dehydrogenation, (III) cycliza-

tion, or (IV) oxidation or any combination of these processes.

Their major function is in protection against oxidative damage

by quenching photosensitizers, interacting with singlet oxygen

(1) and scavenging peroxy radicals (2), thus preventing the

accumulation of harmful oxygen species.

Carotenoids, the most diverse and widespread group of

pigments found in nature, are synthesized de novo by all pho-

tosynthetic and many non-photosynthetic organisms. The

carotenoids pigments are synthesized in the plastids of plants.

In chloroplasts they accumulate primarily in the photosynthet-

ic membranes in association with the light-harvesting and

reaction center complexes. In the chromoplasts of ripening

fruits and flower petals and in the chloroplasts or senescing

leaves the carotenoids may be bound in membranes or in oil

bodies or other structures within the stroma (Cunningham &

Gantt, 1998).

The lipid-soluble carotenoid pigments are but an exam-

ple of the plethora of chemical compounds that are produced

by what are collectively known as the pathways of isoprenoids

biosynthesis. The isoprenoids comprise the largest family of

natural products: over 23 000 individual compounds were

identified to data (Tarshis et al., 1996). 

2

Formation of Isopentenyl Diphosphate

Despite their structural of functions and diversity, all iso-

prenoids derive from the common five-carbon (C5) building

unit isopentenyl diphosphate (IPP) and its isomer dimethylal-

lyl diphosphate (DMAPP), also called isoprene units. The IPP

formation, first investigated in yeast and in mammalian liver

tissue, had been described as the acetate/mevalonate pathway

which was later accepted as ubiquitous in all living organisms

(Spurgeon & Porter, 1981). Until recently, it was generally

assumed that all isoprenoids were synthesized from acetil-CoA

via the classical mevalonate pathway to the central precursor

isopentenyl diphosphate. A few years ago, a totally different

route, in which mevalonate, is not a precursor and where IPP

is formed from glyceraldehydes 3-phosphate (GAP) and pyru-

vate was found in bacteria and green algae (Rohmer et al.,

1993; Broers, 1994; Rohmer et al., 1996; Schwender et al.,

1996), and in plants (Schwarz, 1994). This pathway was orig-

inally named non-mevalonate pathway or Rohmer pathway.

After the identification of the first steps of the pathway, its

name was changed to indicate the substrates (pyruvate/ glyc-

eraldehyde 3-phosphate [G3P] pathway) or the first interme-

diate, deoxyxylulose (DX) 5-phosphate (DXP pathway).

According Rodríguez-Concepción and Boronat (2002), it is

becoming more accepted to name the pathway after what is

currently considered its first committed precursor, methylery-

thritol 4-phosphate (MEP), following the same rule used to

name the MVA pathway.

Pyruvate and glyceraldehyde are mainly obtained by gly-

colysis. In the Embden-Meyerhof-Parnas pathway, glucose is

converted into fructose 1,6-diphosphate that is cleaved into
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dihydroxyacetone phosphate and glyceraldehyde 3-phosphate

(Figure 1). Labeling experiments, with [14C]acetate and

[14C]mevalonate, had shown that in several non-green tissues

of higher plants (Braithwaite & Goodwin, 1960) and in the alga

Euglena gracilis (Steele & Gurin, 1960), the carotenoids were

labeled in a pattern that seemed similar to the general iso-

prenoid labeling pattern found, for example, in squalene

derivatives in other organisms. This was interpreted on the

basis of the classical acetate/mevalonate pathway. Thus there

was no reason to believe that the biosynthesis of isoprenoids in

higher plants or algae occurred other than via the

acetate/mevalonate pathway. 

However, Schwender et al. (1996) found that the antibi-

otic mevinolin, a highly specific inhibitor of mevalonate and

sterol biosynthesis, efficiently blocked sterol biosynthesis in

higher plants but did not affect the formation of chlorophylls

and carotenoids in plastid. According these authors the exper-

iments suggested that mevinolin couldn’t penetrate the

chloroplast or, more likely that chloroplasts possessed a sepa-

rate and different biosynthetic pathway for IPP formation,

which efficiently was blocked by mevinolin.

This novel pathway leading to IPP formation, had been

detected in several eubacteria by Rohmer et al. (1993).

Incorporation of 13C-labelled precursors into triterpenoids of

the several bacteria showed that these species did not use the

acetate/mevalonate pathway for the formation of isoprenoids,

but instead use precursors derived from triose phosphate

metabolism. Figure 1 represents glycolysis of [1-13C]glucose

(·the 13C-label, which arises from feeding of [1-13C]glucose to

plant seedlings and cell cultures) and formation of IPP via two

different pathways, according Lichtenthaler et al. (1997):

a) [3-13C]glyceraldehyde 3-phosphate (GAP) and [3-13C]

pyruvate derive from [1-13C] glucose via glycolysis, [2-13C]

acetyl-CoA derives from [3-13C] pyruvate by the pyruvate

dehydrogenase complex. 

b) According to the classical acetate/mevalonate pathway,

observed in sterol biosynthesis, IPP is built up from acetyl-

CoA ([2-13C] acetyl-CoA) by the following main reactions:

(1) Two molecules of acetyl-Coenzyme A (Ac-CoA) form

acetoacetyl-CoA (AcAc-CoA). (2) Addition of a third mole-

cule of Ac-CoA yields hydroxymethylglutaryl-CoA (HMG-

CoA). (3) (HMG-CoA) is reduced to mevalonic acid (MVA).

(4 and 5) MVA is phosphorylated twice at C5. (6) MVA-5-

diphosphate yields IPP via a decarboxylation/elimination

step.

c) The novel IPP-biosynthesis pathway is based on 13C-incor-

poration. Studies were performed with bacteria (Rohmer et

al., 1993; Rohmer et al., 1996) and the green alga

Scenesdemus obliquus (Schwender et al., 1996).

According to this pathway, also found for the formation of

chloroplast isoprenoids, the addition of a C2 precursor

(derived from pyruvate, most likely by formation of hydro-

xyethyl thiamine (TPP=thiamine diphosphate) to a C3

precursor (glyceraldehydes 3-phosphate GAP) yields a first

C5 intermediate, most likely D-1-deoxyxylulose 5-phos-

phate [(Broers, 1994, in Lichtenthaler et al. (1997)]. The

carbon skeleton of this intermediate or another related C5-

derivative undergoes a rearrangement reaction that pro-

vides the branched carbon skeleton of IPP.

According to 13C-labeling experiments Lichtenthaler et

al. (1997) have concluded that the cytoplasmic sterols are

formed in all three higher plants via the acetate/mevalonate

pathway, whereas the plastidic isoprenoids are synthesized via

a new non-mevalonate IPP pathway. In this new pathway, IPP

is formed from pyruvate and glyceraldehydes 3-phosphate

(Rohmer et al., 1996) yielding, after condensation, 1-deoxyxy-

lulose-5-phosphate, which is most likely the first C5 in the

alternative IPP biosynthesis pathway (Figure 1). A transposi-

tion (Rohmer et al., 1993) yields, finally, the branched iso-

prenic skeleton from the straight-chain deoxypentulose

framework (Figure 1). The 13C-labeling experiments done by

Lichtenthaler et al. (1997) suggest that this mevalonate-inde-

pendent route is not restricted to bacteria and green algae, but

also possesses a wide distribution in plastids of higher plants.

According Lichtenthaler et al. (1997) the plastid-derived

isoprenoids of plants, including carotenoids and the prenyl

side chains of chlorophyll and plastoquinone, as well as iso-

prene (Zeidler et al., 1997), monoterpenes (Eisenreich et al.,

1997) and diterpenes (Eisenreich et al., 1996; Schwarz, 1994)

are synthesized via the pyruvate/ GAP route to IPP. 

Rohmer et al., 1996) working with E. coli mutants defec-

tive in enzymes of the triose phosphate metabolism suggested

that the first reaction of the novel pathway involved the head-

to-head condensation of (hydroxyethyl) thiamin derived from

pyruvate with the C1 aldehyde group of G3P to yield DXP. Three

independent approaches led to the identification of the first

gene of the MEP pathway, encoding DXP synthase (Sprenger et

al., 1997; Lois et al., 1998; Lange et al., 1998)

Lois et al.(1998) have described the cloning of a gene

encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS)

from Escherichia coli, but they did not give any sequence

information. Lange et al. (1998) have cloned and characte-

rized this gene. They described the cloning, heterologous

expression, and transcriptional regulation of the gene enco-

ding DXPS from peppermint. According Lange et al. (1998)
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the cloning of DXS from peppermint provides direct evidence

for the presence in plants of the plastidial mevalonate-inde-

pendent pathway, which operates in parallel with the classical,

cytosolic mevalonate pathway to IPP to produce a very broad

range of isoprenoid compounds. The mevalonate-independent

pathway offers a novel approach to transgenic manipulation of

plant isoprenoid biosynthesis, and because this new pathway

is present in bacteria and plants but not animals, it provides a

unique target for the design of highly specific antibiotics and

herbicides. They proposed also the mechanism of DXS 

(Figure 2). The addition of hydroxyethyl TPP, formed by decar-

boxylation of pyruvate, to C1 of GAP and subsequent loss of TPP

yields 1-deoxy-D-xylulose 5-phosphate, which ultimately gives

rise to IPP. The circled P denotes the phosphate moiety (Lange

et al., 1998)

Kuzuyama et al. (1998) and Takahashi et al. (1998) have

identified the bacterial gene encoding DXP reductoisomerase

(DXR), the enzyme that converts DXP into MEP.

Rohdich et al. (2000) showed, in experiments with the

recombinant enzymes from E. coli and tomato (Lycopersicon

esculentum), that E. coli ygbp encoded a CDP-ME synthase

(CMS) that produced CDP-ME from MEP and CTP (Figure 3).

Herz et al. (2000) and Lüttgen et al. (2000) studied that the

recombinant enzyme encoded by the E. coli ychB gene was a

CDP-ME kinase (CMK) that catalyzes the ATP– dependent

phosphorylation of CDP-ME to CDP ME 2-phosphate (CDP-

MEP). This compound was then converted into ME 2,4-

cyclodiphosphate (ME-cPP) by the enzyme ME-cPP synthase

(MCS), encoded by the E. coli ygbB gene. Charon et al. (2000)

and Rodríguez-Concepción et al. (2000) have demonstrated

that the MEP pathway branched at some point after MEP lead-

ing to the separate synthesis of IPP and DMAPP. Hecht et al.

(2001), Seemann et al. (2002a), Seemann et al. (2002b) and

Wolff et al. (2002) showed that the gcpE gene product encod-

ed an enzyme (hydroxymethylbutenyl 4-diphosphate

[HMBPP] synthase [HDS]) that catalyzes the formation of

HMBPP from ME-cPP (Figure 3). Rohdich et al. (2002)

showed that lytB encode an enzyme (IDS) that directly coverts

HMBPP into a 5:1 mixture of IPP and DMAPP. The branching

is an important difference (Figure 1 and Figure 3) with the

MVA pathway, in which IPP and DMAPP are generated sequen-

tially, the latter arising from the former in a reaction catalyzed

by IPP isomerase (Rodríguez-Concepción & Boronat (2002).

3

Assembly of the C40 Backbone

3.1. IPP isomerase

IPP is the fundamental C5 biosynthetic unit from which

the carotenoids, and indeed all terpenoids, are constructed.

However, an isomerization of IPP into dimethylallyl diphos-

phate (DMAPP) must occur before chain elongation can begin.

Carotenoids Biosynthesis
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Glycolysis of [1-13C] glucose and formation of isopentenyl diphosphate (IPP) via two different pathways (Lichtenthaler et al., 1997).
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Figure 2

Proposed mechanism of DXS (Lange et al., 1998)

Figure 3

The MEP pathway (Rodríguez-Concepción & Boronat, 2002).



DMAPP this then adds two further IPP units to produce succes-

sively farnesyl diphosphate (FPP), the C15 precursor of sterols

and triterpenes and the C20 geranylgeranyl diphosphate

(GGPP). 

Britton (1988) refers that the reaction catalysed by IPP iso-

merase is reversible, the proportions at equilibrium of 

IPP and DMAPP being approximately 1:9. The olefinic protons of

IPP are stereochemically distinct; conversion of IPP into DMAPP

destroys this stereospecificity. Isomerisation of DMAPP can then

give any one of three species of IPP, including an equal mixture

of the two-labeled species (XIV) and (XV) (Figure 4).

DMAPP is the initial, activated substrate for formation of

long chain polyisoprenoid compounds such as GGPP. The for-

mation of DMAPP from IPP is a reversible reaction that is cat-

alyzed by the enzyme IPP isomerase (EC 5.3.3.2). This soluble

enzyme has been isolated from pepper (Dogbo & Camara,

1987) and daffodil (Lützow & Beyer, 1988), but more detailed

information on enzyme structure, cofactors, and reaction

mechanisms is available from studies of the related yeast and

mammalian enzymes (Reardon & Abeles, 1986; Street et al.,

1994; Hahn et al. 1996).

Blanc & Pichersky (1995) have identified a plant cDNA for

IPP isomerase in Clarkia brewerii (Ipi1). Blanc et al. (1996)

have reported a second C. brewerii gene (Ipi2). The

Arabidopsis Ipp2 (GenBank accession number U49259) pre-

dicts a polypeptide of 284 amino acids (32 607 mol. wt.) with

an N-terminal extension, relative to the mammalian and bac-

terial enzymes, that has been suggested to target this enzyme

to the chloroplast (Blanc & Pichersky (1995). The Arabidopsis

Ipp1 (U47324) predicts a polypeptide of 233 amino acids (27

110 mol. wt.) and lacks the N-terminal extension of Ipp2,

thereby is suggesting a cytosolic location (Cunningham &

Gantt, 1998).

Both plastid and cytosolic locations for IPP isomerase are

amply supported by evidence (Dogbo & Camara, 1987; Kleinig,

1989; Bach, 1995). A peroxisomal location for a human

enzyme has been reported (Paton et al. 1997), and a mito-

chondrial location for a plant has been reported (Lützow &

Beyer, 1988). 

According Cunningham & Gantt (1998) the localization

in several different cell compartments ordinarily implies the

existence of specific genes or multiple transcripts to produce

polypeptides targeted to these compartments. As yet, no more

than two different cDNAs or genes have been identified for any

plant.

A reversible isomerization reaction as catalyzed by the IPP

isomerase would seem to be an unlikely candidate for a con-

trolling or regulatory step in isoprenoid biosynthesis. However,

it has been found that the activity of this enzyme in E. coli is

limiting for isoprenoid production as indicated by the accu-

mulation of carotenoids in strains engineered to produce

these pigments (Cunningham & Gantt, 1998). Introduction of

any of a number of different plant, algal, or yeast IPP iso-

merase cDNAs, or of additional copies of the E. coli gene for

this enzyme, enhances the accumulation of carotenoid pig-

ments by several-fold (Kajiwara et al., 1997; Sun et al., 1996;

Sun et al., 1998). These observations raise the possibility that

IPP isomerase activity might also limit biosynthesis of

carotenoids and other isoprenoids in plants.

3.2. GGPP Synthase

The isoprenoid biosynthetic pathway is built around a

family of diphosphate esters of linear alcohols that contain

increasing numbers of isoprene units. Beginning with the C5
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Figure 4

Loss of stereospecificity of hydrogen labeling at C4 of IPP due to isomerization to DMAPP (Britton, 1988).



molecule dimethylallyl diphosphate (DMAPP), a series of C10

(geranyl diphosphate, GPP), C15 (farnesyl diphosphate, FPP),

C20 (geranylgeranyl diphosphate, GGPP) and higher molecular

weight isoprenoid diphosphate are formed by the 1′-4 addition

of IPP to the growing chain (Figure 5). These compounds are

the substrates for biosynthesis of all isoprenoid metabolites,

including monoterpenes, sesquiterpenes, diterpenes, sterols,

carotenoids, ubiquinones, dolichols and prenylated proteins

(Tarshis et al., 1996). The 1′-4 condensation reactions are cat-

alyzed by a family of prenyltransferases, the IPP synthases,

which are highly selective for the chain lengths and double

bond stereochemistry of both substrates and products. For

example, Saccharomyces cereviseae contains at least four

distinct enzymes for chain elongation. FPP synthase (FPPS)

converts DMAPP to FPP for synthesis of sterols, farnesylated

proteins, heme a, and higher chain length isoprenoid diphos-

phates (Anderson et al., 1989). The yeast GGPP synthase con-

verts FPP to GGPP for synthesis of geranylgeranylated proteins

(Jiang et al., 1995).

The 20-carbon GGPP, which serves as the immediate pre-

cursor for carotenoids biosynthesis, is formed by the sequen-

tial and linear addition of three molecules of IPP to one mole-

cule of DMAPP (Figs. 5 and 6). The enzyme that catalyses these

reactions, the GGPP synthase (GGPPS; EC 2.5.1.29), is one

member of a closely related family of prenyltransferase

enzymes that are distinguished by the length of the final prod-

uct (Ogura et al., 1997). A molecular understanding of the

basis for the determination of chain length by these prenyl-

transferases has emerged from the construction and function-

al analysis of site directed mutants (Tarshis et al. 1996) and

from the selection and analysis, after random mutagenesis, of

enzymes with altered function (Scolnik & Bartley, 1993).

Tarshis et al. (1994) studied avian FPPS which catalyses

the sequential chain elongations of DMAPP to GPP and GPP to
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Formation of geranylgeranyl diphosphate (GGPP) from isopentenyl diphosphate (Kajiwara et al., 1997).



FPP. The enzyme is a homodimer, and the sub-units each con-

tain a single site for the C5 to C15 elongation. 

Although these enzymes catalyze similar condensation

reactions, they do not catalyze the condensation beyond the

limit of the chain length of product determined by their own

specificity. Why does the condensation stop at the step that is

determined by each enzyme? It is not easy to understand the

mechanisms that force each prenyltransferase to yield its

intrinsic product.

During the past few years the amino acid sequences of

FPP synthases (Clarke et al., 1987; Anderson et al.; 1989;

Fujisaki et al., 1990; Wilkin et al.; 1990; Koyama et al., 1993)

and GGPP synthases (Misawa et al.; 1990; Carattoli et al.;

1991; Cheniclet, et al., 1992; Math et al.; 1992; Chen et al.,

1994; Ohnuma et al., 1994) have been determined. In FPP

synthase, several groups (Marrero et al., 1992; Joly & Edwards,

1993; Asai et al.; 1994; Koyama et al., 1994; Song & Poulter,

1994) have carried out site-directed mutagenesis studies with

special attention to the two aspartate-rich domains. These

studies have indicated that the aspartate-rich domains are

essential for catalytic activity. It is suggested that the aspartate

residues bind the diphosphate moieties of IPP and allylic sub-

strate through a magnesium bridge. 

Ohnuma et al. (1996) with their work tried to obtain

information about amino acid residues that are related to

chain-length determination. Their results indicated that the

binding of allylic substrate to prenyltransferase causes a con-

formational change that affects the affinity of IPP. Moreover,

during the consecutive reaction of prenyltransferase, a series

of conformational changes might occur, and the changes

might be essential for the prenyltransferase reaction.

Kuntz et al. (1992) have shown that the gene which cod-

ifies GGPPS is expressed in all tissues in which carotenoids

biosynthesis occurs. They have shown also that the expression

of the GGPPS gene increased in ripening fruits in parallel in

carotenoids biosynthesis during chloroplast to chromoplast

differentiation in fruits. The deduced amino acid sequence of

pepper GGPPS shows regions of homology to bacterial and fun-

gal prenyltransferases, including conserved diaspartic (DD)

and diarginine (RR) residues. The conserved DD residues are

involved in catalytic function because treatment of the E. coli-

produced protein with a carboimide reagent that reacts with

free carboxyl groups inhibited GGPPS activity (Kuntz et al.,

1992). Alignment of the deduced pepper GGPPS sequence with

the bacterial and fungal counterparts indicates that the plant

protein contains a 60-residue amino terminal extension, 

likely to correspond a transient peptide for plastid 

localisation.

According Tarshis et al. (1996) an analysis of the x-ray

structure of avian FPPS suggested that the ultimate length of

the polyisoprenoid chain obtained during successive conden-

sations of the growing allylic substrate with IPP is governed by

the size of a hydrophobic pocket in the interior of the enzyme. 

A GGPP synthase has been isolated as a soluble and func-

tional homodimer from the chromoplasts of pepper (Dogbo &

Camara, 1987), and the corresponding cDNA has been identi-

fied and sequenced (Kuntz et al., 1992). Immunolocalization

experiments confirmed a predominant localization in the

chromoplast for GGPP synthase in pepper fiuits (Kuntz et al.,

1992). The enzyme was not, however, distributed homoge-

neously throughout the stroma; rather, it appeared to be con-

centrated in discrete locations, in particular at the developing

stroma globuli where carotenoid accumulation is thought to

occur (Cheniclet et al., 1992).

In Arabidopsis, five different cDNA or genomic clones that

predict polypeptides with substantial sequence similarity to

the pepper GGPP synthase have been identified (Scolnik &

Bartley, 1994; Scolnik & Bartley, 1995; Scolnik & Bartley,

1996; Zhu et al., 1997). One of the products of one of cDNA,

GGPSI, encodes a 371-amino acid polypeptide (40206 mol.

wt.) with an N-terminal extension of 76 amino acids, relative

to bacterial enzymes, that has been suggested to target this

enzyme to the chloroplast (Scolnik & Bartley, 1994). However,

the specific roles and subcellular locations of the various

Arabidopsis GGPP synthases have not been ascertained,

whether there might be a specific isoform of GGPP synthase in

the plastid that is dedicated to carotenogenesis is also

unknown. The presence of GGPP synthase genes in bacterial

carotenogenic gene clusters underscores the importance of

this enzyme in carotenoid biosynthesis (Cunningham & Gantt,

1998).

3.3. Phytoene Synthase

The formation of the symmetrical 40-carbon phytoene

(7,8,11,12,7’,8’,11’,12’-octahydro-ψ,ψ-carotene) from two

molecules of GGPP (Figure 6) is the first reaction specific to

the pathway of carotenoid biosynthesis. The biosynthesis of

phytoene from GGPP is a two-step reaction catalyzed by the

enzyme phytoene synthase (PSY; EC 2.5.1.32). The sequence

of reactions is common to all terpenoids, including other plas-

tid terpenoids (chlorophylls, plastoquinones, tocopherols,

phylloquinones, and polyterpenes). However the two steps in

which prephytoene diphosphate (PPPP) and phytoene are

formed, are catalyzed by the first carotenoids-specific enzymes
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in the pathway. The reaction has two steps: (1) the coupling of

two molecules of geranylgeranyl diphosphate to yield prephy-

toene diphosphate and (2) the conversion of prephytoene

diphosphate to phytoene. The identification of the enzyme

components catalyzing these two steps is crucial for the under-

standing of the molecular mechanism of the carotenoids

biosynthesis and of its regulation; a particularly interesting

question is whether the two activities reside on two different

enzymes or on the same enzyme (Cunningham & Gantt,

1998).

Using Capsicum chromoplasts stroma, Dogbo et al

(1988) have isolated and characterized a bifunctional enzyme

that catalyze the synthesis of phytoene. They showed that a sin-

gle monomeric protein (mol. wt. 47500) catalyzes the dimeri-

ation of geranylgeranyl diphosphate into prephytoene diphos-

phate and the conversion of the latter into phytoene. The two

reactions followed conventional Michaelis-Menten kinetics,

with Km values of 0,30mM and 0,27mM, respectively, for

GGPP and PPPP. The activity of the enzyme depends strictly

upon the presence of Mn2+. This selectivity may be one of the

factors regulating the competition with potentially rival

enzymes converting GGPP into other plastid terpenoids. The

two-enzymatic reactions were inhibited by inorganic

pyrophosphate and by the arginine-specific reagent hydrox-

yphenylglyoxal. In no instance were the two reactions kineti-

cally uncoupled. These properties strongly suggested, to the

authors, that the same enzyme catalyses the two consecutive

reactions and they proposed the name phytoene synthase.

Scolnik & Bartley (1994b) studying the nucleotide

sequence of an Arabidopsis cDNA for PSY have predicted a

polypeptide of 423 amino acids with a mol. wt. of 47611, but

according Karvouni et al. (1995) the mature size will be prob-

ably about 40 kDa. Bartley et al. (1992) have concluded that

this enzyme may normally be loosely if not tightly associated

with chloroplast or chromoplast membrane. A specific

requirement for galactolipid was demonstrated for catalytic

activity of the PSY of Narcissus pseudonarcissus (daffodil)

chromoplasts (Schledz et al., 1996). A membrane association

of PSY is expected because of the need to deliver the lipid-sol-

uble phytoene to the membranes of the chloroplast where

phytoene and subsequent intermediates and end products of

the pathway are localised (Cunningham & Gantt, 1998).

4

Desaturation and Cyclization

4.1. The Desaturases 

Phytoene undergoes a series of four desaturation reac-

tions (Figure 7) that result in the formation of first phytofluene

(7,8,11,12,7’,8’-hexahydro-Ψ,Ψ-carotene) and then, in turn,

ξ-carotene (7,8,7’,8’-tetrahydro-Ψ,Ψ-carotene), neu-

rosporene (7,8-dihydro-Ψ,Ψ-carotene), and lycopene (Ψ,Ψ-

carotene). These desaturation reactions serve to lengthen the

conjugated series of carbon-carbon double bonds that consti-
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Figure 6

The C40 carotenoid phytoene is derived by a head-to-head condensation of two molecules of the C20 geranylgeranyl pyrophosphate (GGPP),

which itself is assembled from three molecules of the C5 isopentenyl diphosphate (IPP) and one molecule of its isomer, dimethylallyl diphos-

phate (DMAPP). FPP (farnesyl diphosphate), GPP (geranyl diphosphate), PPPP (prephytoene diphosphate) (Cunningham & Gantt, 1998).



tutes the chromophore in carotenoid pigments, and thereby

transform the colourless phytoene into the pink-coloured

lycopene (Cunningham & Gantt, 1998).

At each stage, two hydrogen atoms are removed by trans-

elimination from adjacent positions to introduce a new double

bond and extend the conjugated polyene chromophore by two

double bond (McDermott et al., 1973). 

The four sequential desaturations undergone by phy-

toene are catalysed by two related enzymes in plants: phytoene

desaturase (PDS) and ξ-carotene desaturase (ZDS).

Armstrong (1994) and Sandmann (1994) have described that

bacteria and fungi achieve the same result with a single gene

product (CRTI).

Plant and cyanobacterial PDS are unusually well con-

served in amino acid sequence. Scolnik & Bartley (1993) have

studied PDS from Arabidopsis concluding that is a polypeptide

of 566 amino acids (61964 mol. wt.).

A cDNA encoding a ZDS was identified by functional

analysis in E. coli of a pepper cDNA that predicts a plant

enzyme mediating zeta carotene desaturation, which is a

polypeptide distantly resembling the known plant PDS

(Albrecht et al., 1995). The pepper ZDS is about equidistant

from plant and cyanobacterial PDS in predicted amino acid

sequence comparisons (33-35% identities). An Arabidopsis

homologue of the pepper ZDS was described by Scolnik &

Bartley (1996), which is a polypeptide of 558 amino acids (60

532 mol. wt.). 

Hugueney et al. (1995) have characterized a flavoprotein

which catalyses the synthesis of phytofluene and zeta carotene

in Capsicum chromoplasts.

Bramley (1985) has demonstrated that the desaturases

are membrane-associated in plants although the predicted

amino acid sequences are not particularly hydrophobic over-

all. From a titration of the amount of detergent required to

release PDS from daffodil chromoplast membranes, it was

concluded that PDS is not an integral membrane protein

(Schledz et al., 1996). 

According Britton (1979) the presence of the oxidised

coenzymes FAD or NADP (or both) was essential, though their

direct involvement in the desaturation reactions has not been

proved. He suggested the involvement of the some kind of sim-

ple electron transport system related to cytochrome P450 in

the desaturations. The oxidized coenzymes could be required

to maintain the electron transport components in the required

oxidation state.

Schledz et al. (1996) observed for the daffodil PDS, that

FAD must be bound before or at the time of membrane inte-

gration, otherwise the membrane-associated enzyme will not

be active. Enzyme assays of the flavinylated membrane-associ-

ated enzyme do not require additional FAD, supporting a role

for tightly bound FAD as cofactor and implicating a mem-

brane-associated electron acceptor. Mayer et al. (1990) and

Nievelstein et al. (1995) demonstrated the involvement of

quinones as electron acceptors for the desaturase reactions. 

4.2-The Cyclases

The carotenoids in the photosynthetic apparatus of plants

are bicyclic compounds, most commonly with two β or modi-
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Figure 7

A series of four consecutive desaturation reactions at the 11-12, 11’-12’, 7-8, and 7’-8’ positions extend the conjugated series of double bonds

that constitutes the chromophore in carotenoid pigments. Double bonds introduced by the desaturation reactions are indicated by inverted

triangles. Conventional numbering of the carbon atoms is shown for phytoene (Cunningham & Gantt, 1998).



fied β rings (Figure 8). The cyclization reaction would be the

same when acyclic intermediates are lycopene or neu-

rosporene. β-, γ– and ε-end groups are formed by proton loss

from alternative positions in the same transient carbonium

ion intermediate (Britton, 1988). The proposed mechanism

for cyclization involves initial proton attack at C2 of the acyclic

precursor. The incoming hydrogen atom would be retained at

C2 of the cyclic carotenoids formed (Figure 8).

A single gene product, the lycopene β-cyclase (LCYB), cat-

alyzes the formation of the bicyclic β-carotene (Figure 9) from

the linear, symmetrical lycopene in plants and cyanobacteria

(Cunningham et al., 1994; Cunningham et al., 1996;

Hugueney et al., 1995; Pecker et al., 1996). Some authors

(Cunningham et al., 1994; Cunningham et al., 1996; Pecker et

al., 1996) thought that desaturation of the 7-8 carbon-carbon

bond were a prerequisite for the cyclization reaction. However,

in a subsequent report on a pepper LCYB it was found that the

bicyclic compound 7,8-dihydro-β,β-carotene was produced in

E. coli when neurosporene (7,8,-dihydro-ψ,ψ-carotene) was

provided as the substrate (Tarshis et al., 1996). According

Cunningham & Gantt (1998) the desaturation at the 7-8 posi-

tion, while not an absolute requirement for cyclization, may

play a role in substrate recognition and/or binding. An associa-

tion of the cyclases in the form of a homodimer could explain

cyclization at both ends of neurosporene and the lack of cycliza-

tion for ξ-carotene. Neurosporene, recognised and bound at

one end by virtue of desaturation of the 7-8 carbons at that end,

would, at the same time, be constrained at the other end of the

molecule in close proximity to and in the proper orientation for

cyclization by a second cyclase subunit. 

Lutein, the predominant carotenoid in the photosynthetic

tissues of many plants and algae, has one β ring and one ε ring.

Carotenoids with two ε rings are uncommon in plants and

algae (Goodwin, 1980). The ε ring differs from the β ring only

in the position of the double bond within the cyclohexene ring

(Figures 8 and 9). Cunningham et al. (1996) have identified a
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Figure 9

Cyclization of lycopene is a branch point in carotenoid biosynthesis. β-Carotene, with two β rings, is an essential end product and serves 

as the precursor for several other carotenoids that are commonly found in the photosynthetic apparatus of plants. α-Carotene, 

with one β and one ε ring, is the immediate precursor of lutein, the predominant carotenoid pigment in the photosynthetic membranes 

of many green plants (Cunningham & Gantt, 1998).

Figure 8

Mechanism of the formation of β-, γ– and ε– rings from a common precursor (Britton, 1988)



cDNA encoding the enzyme that catalyses formation of the ε

ring in Arabidopsis; it was identified by making use of the pink-

to-yellow color change that accompanies lycopene cyclization

in E. coli. The lycopene ε-cyclase (LCYE) of Arabidopsis is a

homologue of the β-cyclase, and related, single-copy genes

encode both enzymes. The ε-cyclase adds only one ring to the

symmetrical lycopene, forming the monocyclic δ-carotene

(e,y-carotene). Cunningham et al. (1996) have showed that

when combined, the β-and ε-cyclases convert lycopene to α-

carotene (β, ε-carotene), a carotenoid with one β and one ε

ring that serves as the precursor for formation of lutein. 

The inability of the ε-cyclase of Arabidopsis to add more

than one ε ring to lycopene has been suggested to provide a

mechanism for control of cyclic carotenoid formation

(Cunningham et al., 1996). The apportioning of substrate into

the pathways leading to β,ε-carotenoids (e.g. the abundant

lutein) and to β,β-carotenoids (e,g, β-carotene, zeaxanthin,

and violaxanthin) could be determined quite simply by the rel-

ative amounts and/or activities of the ε– and β-cyclase

enzymes. 

Carotenoids with two ε rings are not commonly found in

plants. Lettuce is one of the rare examples of plants known to

accumulate substantial amounts of a carotenoid with two ε–

rings: lactucaxanthin (ε,ε-carotene-3,3’-diol; Siefermann-

Harms et al., 1981). The ε-cyclase of romaine lettuce has been

found to be a dose homologue of the Arabidopsis ε –cyclase

(ca 80% identity for the amino acid sequences).

The signature pigments of pepper, capsanthin and cap-

sorubin, contain an unusual cyclopentane ring (the κ ring-

Figure10) that is formed from the 3-hydroxy-5,6-epoxy-β

rings found in violaxanthin and antheraxanthin. The capsan-

thin-capsorubin synthase enzyme (CCS) has been purified,

and a cDNA encoding it has been identified and sequenced by

Bouvier et al. (1994). The pepper CCS (498 amino acids and

56659 mol. wt.) closely resembles β-cyclases in its predicted

amino acid sequence (Bouvier et al., 1994), and the gene

product has more recently been shown to also possess a β-

cyclase activity (Hugueney et al., 1995; Pecker et al., 1996).

The pepper CCS was purified by Bouvier et al. (1994) from

detergent-solubilized chromoplast membranes to yield a pale-

yellow, intensely fluorescent polypeptide of approximately 60

kDa, as estimated by gel filtration. 

The ε- and β-cyclases and CCS all have an amino acid

sequence signature that are conserved in enzymes that bind

dinucleotides such as FAD and NADP (Cunningham et al.,

1996.

The predicted amino acid sequences of the Arabidopsis

β-cyclase (501 amino acids and 56174 mol. wt.) and ε-cyclase

(524 amino acids; 58512 mol. wt.) are as much as 100 amino

acids longer at the Ν-terminus than the homologous

Synechococcus enzyme (411 amino acids and 46085 mol. wt.)

when the sequences are aligned (Cunningham et al., 1996).

Highly conserved but distinctly different sequence regions in

the β– and ε-cyclases suggest that the mature plant ε– and β-

cyclases may retain 30-50 amino acids of N-terminal sequence

upstream of the position coincident with the start of the

cyanobacterial β-cyclase. This would yield polypeptides of

slightly greater than 50 kDa (Cunningham & Gantt, 1998) 
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Figure 10

Proposed mechanism for formation of the κ-ring in capsanthin and capsorubin (Britton, 1988).



5

Xanthophyll Formation

5.1. The Hydroxylases 

Xanthophylls or oxygenated carotenoids comprise most

of the carotenoid pigment in the thylakoid membranes of

plants. The dihydroxy carotenoid zeaxanthin (β,β-carotene-

3,3’-diol) is thought to play a central role in the nonradiative

dissipation of light energy under conditions of excessive pho-

ton capture by the photosynthetic light-harvesting apparatus

(Demmig-Adams & Adams, 1993).

Hydroxylation at the number three carbon of each ring of

the hydrocarbons β-carotene and α-carotene (Figure 9) will

produce the well-known xanthophyll pigments zeaxanthin

(β,β-carotene-3,3’-diol-Figure 13) and lutein (β,ε-carotene-

3,3’-diol), respectively (Figure 11). Apart from the hydroxyla-

tion at C1, which take place as early as the phytoene stage, oxy-

gen functions and other structural modifications in

carotenoids are believed to be introduced at the end of the

biosynthetic sequences (Britton, 1988). Hydroxylation at C3 of

the β-ring (Figure 12) (e.g. in zeaxanthin and lutein) normal-

ly proceeds by direct replacement of the hydrogen precursor

by OH (Britton, 1976).

Because the chirality of the hydroxyl on the e-ring is

opposite that of the hydroxyl on the b ring of lutein (Britton,

1990), it is thought that different enzymes catalyze these reac-

tions. Genetic evidence (Pogson et al., 1996) and functional

analysis of an Arabidopsis β-hydroxylase enzyme (Block et al.,

1983) support the existence of separate hydroxylases specific

for the β– and ε-rings.

Zeaxanthin is formed from β-carotene (β,β-carotene) by

hydroxylation (Figure 13). Zeaxanthin, in turn, serves as the

substrate for biosynthesis of many other important xantho-

phylls. Sun et al. (1996) have identified an A. thaliana cDNA

encoding the enzyme β-carotene hydroxylase, by functional

complementation in Ε. coli. The product of this cDNA adds

hydroxyl groups to both β rings of the symmetrical 

β-carotene (β,β-carotene) to form zeaxanthin and converts

the monocyclic β-zeacarotene (7′,8′-dihydro-β,ψ-carotene)

to hydroxy-ß-zeacarotene (7′,8′-dihydro-β,ψ-carotene-3-ol).

The ε rings of δ-carotene (ε,ψ-carotene) and α-zeacarotene

(7′,8′-dihydro-ε,ψ-carotene) are poor substrates for the

enzyme. According Pogson et al. (1996) the inefficient hydrox-

ylation of ε-rings in heterologous Ε. coli assay system is con-

sistent with genetic evidence that implies the existence of a

separate ε-hydroxylase. The chirality of the hydroxyl group in

the ε-ring of lutein (β-ε-carotene-3,3’-diol) extracted from

Calendula officinalis is opposite to that of the hydroxyl group

in the b ring of this same compound which implies a separate

ε– hydroxylase. 

According Sun et al. (1996) the Arabidopsis β-hydroxy-

lase cDNA predicts a polypeptide of 310 amino acids (34000

mol. wt. and a pΙ of 9,4). The identity between the predicted

sequences of the A. thaliana and the bacterial hydroxylases

ranges from 31-37% with more than one-fourth of the identi-

cally conserved residues being histidines. The β-carotene

hydroxylase of A. thaliana is presumed to be located in the

thylakoid membranes of the chloroplasts in this plant. They

found that the sequence of the predicted enzyme includes an

Ν-terminal region that is not found in the bacterial enzymes.

They truncated the A. thaliana cDNA to examine whether and

how much of this Ν-terminal extension was essential to

enzyme function. The product of this truncated cDNA efficient-

ly converted β-carotene to zeaxanthin (92-93% of the total

carotenoid) in cells of E. coli. As in the «full– length» cDNA

(which lacks the first 16 amino acids) a small amount of β-

cryptoxanthin (7-8% of the total) was also detected (Figure

12). They made a second truncation removing the portion of

the cDNA encoding the first 129 amino acids of the A. thaliana

β-carotene hydroxylase. The product of this construct does

hydroxylated most of the β-carotene produced in cells of Ε.

coli. However, the major product (75-77% of the total) was 

β-cryptoxanthin (one ring available for hydroxylation) 16-18%
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Figure.11

Chemical structures of some of the xanthophylls 



of zeaxanthin and 7% of β-carotene (two rings available for

hydroxylation), indicating a marked preference of the truncat-

ed enzyme for β-ring of β-carotene. They concluded that the

β-rings of β-carotene are hydroxylated with greater efficiency

than the not yet hydroxylated β-ring of β-cryptoxanthin.

It was speculated that a portion of the cleaved Ν-terminal

region might be involved in formation of enzyme homodimers

(Sun et al., 1996), though other plausible explanations (e.g,

accessibility of the second ring) could certainly be offered

(Cunningham & Gantt, 1998). Fraser et al. (1997) studied the

biosynthesis of astaxanthin in vitro and observed the require-

ment of oxygen and the catalytic effect of iron for two of bacte-

rial β-hydroxylases, to produce astaxanthin. The authors

noted the resemblance of a series of conserved histidine

motifs (all of which are also present in the Arabidopsis

enzyme) to those of enzymes containing nonheme iron. The

arrangement of the histidine motifs and their position with

respect to the predicted transmembrane helices are notable in

their resemblance to the arrangement and positioning of sim-

ilar motifs found in a structurally related group of oxygen-

dependent, di-iron-containing membrane-integral enzymes

(Shanklin et al., 1994; Shanklin et al., 1997; Shanklin &

Cahoon, 1998). Members of this large and diverse group of di-

iron oxygenases, which includes the membrane-associated

fatty acid desaturases and various hydroxylases and oxidases

such as the β-C-4-oxygenase or ketolase described in the fol-

lowing section, share an ability to attack unactivated carbons

(Shanklin & Cahoon, 1998). They thereby provide an alterna-

tive class of enzymes with an ability to carry out the type of

reactions usually associated with cytochromes P450
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Figure 13

Formation of some common xanthophylls from β-carotene, and cleavage of 9-cis epoxycarotenoids to produce xanthoxin, the precursor of

abscisic acid (ABA) (Cunningham & Gantt, 1998).

Figure 12

Stereochemistry of hydroxylation at C3 in the β– and ε-rings (Britton, 1988).



(Estabrook, 1996). Studies concerning the structure, function,

cofactor requirements, and catalytic mechanisms of others in

this class of enzymes should provide valuable insights into the

function of the plant and bacterial β-ring hydroxylases and

oxygenases (Cunningham & Gantt, 1998).

5.2. β-C-4-Oxygenase

Addition of a keto group at the 4 position of one or both

rings of the yellow β-carotene will produce the reddish-orange

to red pigments (Figure 14) echinenone (β,β-carotene-4-one),

canthaxanthin (β,β-carotene-4,4’-dione), hydroxyechinone

(3-hydroxy-β,β-carotene-4-one) and astaxanthin. Lotan &

Hirschberg (1995) studied a gene encoding β-C-4-oxygenase (a

ketolase) that converts β-carotene to the ketocarotenoid can-

thaxanthin in Haematococcus pluvialis. Kajiwara et al. (1995)

have isolated and identified a cDNA for astaxanthin biosynthe-

sis from green alga H. pluvialis. The CrtO gene product of

Lotan & Hirschberg (1995) and the Bkt gene product of

Kajiwara et al. (1995) isolated from two different strains of H.

pluvialis are very much alike (greater than 80% identity for the

predicted amino acid sequences). Also Misawa et al. (1995a)

and Misawa et al. (1995b) studied two bacterial ketolase

enzymes, products of crtW gene of Agrobacterium auranti-

acum and Alcaligenes sp. These polypeptides resemble those

of the H. pluvialis and Adonis palaestina.

The H. pluvialis and bacterial ketolases (but not the

Synechocystis ketolase) are, like the Arabidopsis and bacteri-

al β-ring hydroxylases (and the Adonis ketolase), members of

a large class of membrane-integral, di-iron oxygenase

enzymes (Breitenbach et al., 1996). These authors and Fraser

et al. (1997) observed a requirement for molecular oxygen

and a stimulatory effect of iron for the H. pluvialis Bkt gene

product and two bacterial crtW gene products. The 320-amino

acid polypeptide (35989 mol. wt.) predicted by the Bkt of H.

pluvialis has an Ν-terminal extension of 65 amino acids

when aligned with the two bacterial CRTW enzymes (both 242

amino acids and ca. 27000 mol wt). The CrtW enzyme likewise

has such an N-terminal extension. Truncation of the Bkt cDNA

to yield a polypeptide lacking the first 32 amino acids did not

eliminate enzyme activity in E. coli, but removal of 60 amino

acids did result in loss of activity (Kajiwara et al., 1995a,b). 

The end product ketocarotenoid in H. pluvialis and in

many bacteria and fungi is the diketo, dihydroxy compound

astaxanthin (3,3’-dihydroxy-β,β-carotene-4,4’-dione). The

initial report for the crtO gene product of H. pluvialis (Lotan

& Hirschberg, 1995) indicated that the enzyme, expressed in

E. coli, was unable to utilize the dihydroxy carotenoid zeaxan-

thin as a substrate. Therefore it was concluded by Lotan &

Hirschberg (1995), that the route to astaxanthin proceeds with

addition of the keto groups before hydroxylation. Bkt gene

product, also expressed in E. coli, exhibited a similar prefer-

ence for β rings lacking a 3-hydroxyl (Breitenbach et al.,

1996). However, in vitro assay done by Fraser et al. (1997)

with the H. pluvialis BKT showed only a moderate preference

for β-carotene (no hydroxylation) over zeaxanthin (dihydroxy

carotenoid).

A pathway (Figure 15) was proposed by Misawa et al.

(1995b). The hydroxylation of β-carotene at positions 3 and 3′
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Figure 14

Some ketocarotenoids (Britton, 1988)



on the β-ionone ring forming zeaxanthin via β-cryptoxanthin

is mediate by the product of the gene designed crtZ, which has

been isolated from Erwinia species (Misawa et al., 1990). The

direct conversion of methylene to keto groups at positions 4

and 4′ on the β-ionone ring forming canthaxanthin via echi-

none are reactions performed by the gene product encoded by

the crtW gene from marine bacteria (Misawa et al. 1995b) and

bkt gene of H. pluvialis (Kajiwara et al., 1995).

5.3. Epoxidase and de-epoxidase

Carotenoids serve as accessory pigments in the capture of

photon energy (Cogdell & Frank, 1987) and efficiently quench

the deleterious effects of triplet chlorophyll and singlet oxygen

(Krinsky, 1979). Carotenoid epoxides, known to occur in plants

and alga, display additional roles. First, the cyclic de-epoxida-

tion of violaxanthin (Figure 16) and epoxidation of zeaxanthin

represent key mechanisms in the adapting plants and green

alga to high light intensity (Yamamoto, 1979; Demmig-Adams

& Adams, 1992). Second xanthophyll epoxides serve as precur-

sors of the plant hormone abscisic acid (Rock & Zeevart, 1991).

Finally, when xanthophyll epoxides are converted to the keto-

xanthophylls capsanthin and capsorubin, they yield the red

colour of ripe pepper fruits that track the transformation of

chloroplasts into chromoplast (Camara et al., 1995).

The epoxidation of zeaxanthin to form violaxanthin

(5,6,5’,6’-diepoxy-5,6,5’,6’-tetrahydro-β,β-carotene-3,3’-

diol) via antheraxanthin (5,6-epoxy-5,6-dihydro-β,β-caro-

tene-3,3’-diol) and de-epoxidation of violaxanthin to regener-

ate zeaxanthin comprise what is variously referred to as the

xanthophyll, violaxanthin, or epoxide cycle (Demmig-Adams

et al., 1996; Yamamoto, 1979). A cDNA encoding the zeaxan-

thin epoxidase (ZEP) or «β-cyclohexenyl xanthophyll epoxi-

dase» in Nicotiana plumbaginifolia was identified by Marin

et al. (1996). 

Pepper (Capsicum annuum) β-cyclohexenyl xanthophyll

epoxidase cDNA was cloned and the corresponding enzyme over

expressed and purified from E. coli by Bouvier et al. (1996). The

pepper epoxidase showed 88% identity to the amino acids
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Postulated astaxanthin biosynthetic pathway deduced from in vitro studies (Misawa et al., 1995b).



sequence of Nicotiana plumbaginifolia (Marin et el., 1996).

The molecular weight of the mature epoxidase was 65 kDa.

Bouvier et al. (1996) tested the ability of heterologously

expressed and purified epoxidase to catalyse the epoxidation of

zeaxanthin in the presence of 1mM NADPH and molecular oxy-

gen. Under these minimal conditions, enzymatic formation of

epoxy derivatives was observed. They showed two possible rea-

sons: a) it was required a peroxygenase reaction; b) it was nee-

ded an additional electron transport system for the reaction to

proceed. In vitro assay of a pepper ZEP these authors conclu-

ded that cyclohexenyl carotenoid epoxidase could be classified

as a monooxygenase that catalyses the introduction of molecu-

lar oxygen in the presence of NADPH, ferredoxin and ferredo-

xin-like reductase. Since the catalytic mechanism of flavo-

protein monooxygenase involves the formation of a flavin

hydroperoxide enzyme intermediate, the resulting hydrope-

roxy-flavin is thus cleaved to incorporate one oxygene atom into

zeaxanthin, while the others is reduced into water (Figure 17).

The pepper epoxidase acted specifically on the β-ring of

xanthophylls such as β-cryptoxanthin, zeaxanthin, and

antheraxanthin. The reaction mechanism proposed, by

Bouvier et al. (1996), for epoxidation involves the formation

of a transient carbocation. In examination the specificity of the

purified epoxidase, they observed that α-carotene and lutein,

which have β,ε-rings, were not epoxidized, concluding that the

cloned epoxidase appears to be a β-cyclohexenyl epoxidase

catalysing the reactions depicted in Figure 18.

The amino acid sequences of the pepper and tobacco ZEP

are similar to that of a flavoprotein monooxygenase (salicylate-

1-monooxygenase) and those of a number of other bacterial

hydroxylases (Bouvier et al., 1996; Marin et al., 1996). The

tobacco epoxidase is predicted to encode a polypeptide of 663

amino acids (72524 mol wt). 

Some authors studied violaxanthin de-epoxidase (Bugos

& Yamamoto, 1996 and Rockholm & Yamamoto, 1996)

obtained from romaine lettuce. Ν-terminal sequencing of the

purified lettuce enzyme indicates a cleavage site for transit

peptide of the lettuce enzyme immediately after residue 125 

to yield a mature polypeptide of 348 amino acids (39929 

mol. wt.).
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Fig 17

Redox cofactors involved in the monooxygenase activity of β-cyclohexenyl carotenoid epoxidase (Bouvier et al., 1996)

Figure 16

Violaxanthin (Britton, 1988)
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Figure 18

Enzymatic steps catalysed by Capsicum annuum β-cyclohexenyl epoxidase



5.4. Epoxycarotenoid cleavage enzyme

Zeevaart & Creelman (1988) studied the metabolism and

physiology of abscisic acid (ABA). They considered that the

epoxycarotenoids violaxanthin and neoxanthin (5′,6′-epoxy-

6,7-didehydro-5,6,5′,6′-tetrahydro-β,β-caroten-3,5,3′-triol)

are the precursors for biosynthesis of the plant growth regula-

tor. Schwartz et al. (1997) characterized a maize enzyme that

promotes the conversion of epoxycarotenoids to ABA. They

studied the maize vp14 gene, which encodes a protein that

cleaves only the 9-cis geometrical isomers of violaxanthin and

neoxanthin to yield cis-xanthoin (Figure 13). They proved that

these enzymes in vitro assays require oxygen, iron and a

detergent. The cDNA encoding the maize VP14 enzyme pre-

dicts a polypeptide of 604 amino acids (64 587 mol. wt.).

6
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