Humans vs AI : an exploratory study with online and offline learners

dc.contributor.authorInácio, João
dc.contributor.authorFachada, Nuno
dc.contributor.authorCarvalho, João P. Matos
dc.contributor.authorFernandes, Carlos M.
dc.date.accessioned2024-01-03T13:22:40Z
dc.date.available2024-01-03T13:22:40Z
dc.date.issued2024-01-02
dc.description.abstractWe present an exploratory study comparing human player performance against online and offline AI learning techniques—the Naive Bayes Classifier and Genetic Algorithms, respectively—using a simple turn-based game. Human player performance is also assessed according to gender, age, experience playing games, and boredom level during game sessions. Human players and AI techniques are shown to obtain statistically equivalent score distributions. No gender performance differences were found, although performance seems to decrease with age. To a lesser extent, performance appears to improve with self-assessed experience and boredom levels. This study offers a base for more comprehensive experiments, suggesting various directions for future research.pt
dc.description.sponsorshipSupported by Fundação para a Ciência e a Tecnologia (Portugal) under Grant UIDB/04111/2020 (COPELABS).pt
dc.formatapplication/pdfpt
dc.identifier.citationInácio, J., Fachada, N., Matos-Carvalho, J.P. & Fernandes, C.M. (2022). Humans vs AI: An Exploratory Study with Online and Offline Learners. Videogame Sciences and Arts, VJ 2023, CCIS, vol 1984 (pp. 272-286). Springer Nature. https://doi.org/10.1007/978-3-031-51452-4_19pt
dc.identifier.isbn978-3-031-51452-4
dc.identifier.urihttps://doi.org/10.1007/978-3-031-51452-4_19
dc.identifier.urihttp://hdl.handle.net/10437/14392
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsclosedAccesspt
dc.subjectCOMPUTER GAMESen
dc.subjectJOGOS DE COMPUTADORpt
dc.subjectGENETIC ALGORITHMSen
dc.subjectALGORITMOS GENÉTICOSpt
dc.titleHumans vs AI : an exploratory study with online and offline learnersen
dc.typeconferenceObjectpt

Ficheiros

Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: