ParShift: a Python package to study order and differentiation in group conversations

dc.contributor.authorCarvalho, João P. Matos
dc.contributor.authorFachada, Nuno
dc.contributor.authorPita, Manuel Arturo Marques
dc.contributor.authorSaraiva, Bruno David Ferreira
dc.contributor.authorMatos-Carvalho, João Pedro
dc.contributor.institutionCOPELABS (FCT) - Centro de Investigação em Computação Centrada nas Pessoas e Cognição (CTS)
dc.contributor.institutionCICANT (FCT) - Centro de Investigação em Comunicação Aplicada, Cultura e Novas Tecnologias
dc.contributor.institutionEscola de Comunicação, Arquitetura, Artes e Tecnologias da Informação
dc.date.issued2023-12-01
dc.descriptionSoftwareX
dc.description.abstractCollective organization in multi-party conversations emerges through the exchange of utterances between participants. While most research has focused on content-centred mechanisms that lead to emergent conversational coordination, less attention has been given to explaining conversational order based on who is addressed and who responds, especially when dealing with large conversational datasets. In this paper, we introduce a Python library, ParShift, that implements a state-of-the-art theoretical quantitative framework known as Participation Shifts. This framework enables researchers to study participant-centred order and differentiation in multi-party conversations. With ParShift, researchers can characterize conversations by quantifying the probabilities of events related to how people address each other during conversations. This library is particularly useful for studying conversation threads in social networks, parliamentary debates, team meetings, or student debates on a large scale. Keywords: Small groups Social interaction Participation shifts Interpersonal coordination Turn-taking Emergent social behaviouren
dc.description.sponsorshipThis work is supported by Fundação para a Ciência e a Tecnologia , FCT I. P. project “Factors for promoting dialogue and healthy behaviours in online school communities” with reference DSAIPA/DS/0102/2019 developed at the R&D Unit CICANT - Research Centre for Applied Communication, Culture and New Technologies at Universidade Lusófona, Portugal.
dc.description.statusNon peer reviewed
dc.formatapplication/pdf
dc.identifier.citationCarvalho , J P M , Fachada , N , Pita , M A M , Saraiva , B D F & Matos-Carvalho , J P 2023 , ' ParShift: a Python package to study order and differentiation in group conversations ' , SoftwareX , vol. 24 , 101554 . https://doi.org/10.1016/j.softx.2023.101554
dc.identifier.doihttps://doi.org/10.1016/j.softx.2023.101554
dc.identifier.issn2352-7110
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofseriesvol.24
dc.rightsopenAccess
dc.subjectGRUPOS
dc.subjectINTERAÇÃO SOCIAL
dc.subjectCOMPORTAMENTO SOCIAL
dc.subjectINFORMÁTICA
dc.subjectGROUPS
dc.subjectSOCIAL INTERACTION
dc.subjectSOCIAL BEHAVIOUR
dc.subjectCOMPUTER SCIENCE
dc.titleParShift: a Python package to study order and differentiation in group conversationsen
dc.typearticle

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
2023_softx_parshift.pdf
Tamanho:
860.93 KB
Formato:
Adobe Portable Document Format
Descrição:
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: