Modelling physiological sensor noise to movement-based virtual reality activities

dc.contributor.authorLopes, Phil
dc.contributor.authorFachada, Nuno
dc.contributor.authorFonseca, Micaela
dc.contributor.authorGamboa, Hugo
dc.contributor.authorQuaresma, Claudia
dc.contributor.institutionFaculdade de Engenharia
dc.date.issued2024-01-01
dc.descriptionProceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2024)
dc.description.abstractThis position paper proposes the hypothesis that physiological noise artefacts can be classified based on the type of movements performed by participants in Virtual Reality contexts. To assess this hypothesis, a detailed research plan is proposed to study the influence of movement on the quality of the captured physiological signals. This paper argues that the proposed plan can produce a valid model for classifying noisy physiological signal features, providing insights into the influence of movement on artefacts, while contributing to the development of movement-based filters and the implementation of best practices for using various associated technologies.en
dc.description.statusNon peer reviewed
dc.identifier.citationLopes , P , Fachada , N , Fonseca , M , Gamboa , H & Quaresma , C 2024 , ' Modelling physiological sensor noise to movement-based virtual reality activities ' , Paper presented at Scitepress , 23/02/24 pp. 778-785 . https://doi.org/10.5220/0012424200003657
dc.identifier.doihttps://doi.org/10.5220/0012424200003657
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofseries
dc.rightsopenAccess
dc.subjectREALIDADE VIRTUAL
dc.subjectPROCESSAMENTO DE DADOS
dc.subjectBIOFEEDBACK
dc.subjectAPRENDIZAGEM COMPUTACIONAL
dc.subjectVIRTUAL REALITY
dc.subjectDATA PROCESSING
dc.subjectMACHINE LEARNING
dc.titleModelling physiological sensor noise to movement-based virtual reality activitiesen
dc.typeconferenceObject

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
2024_biostec_physiomov.pdf
Tamanho:
175.7 KB
Formato:
Adobe Portable Document Format
Descrição:
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: